TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia

[1]  C. Wessig,et al.  C-terminal FUS/TLS mutations in familial and sporadic ALS in Germany , 2011, Neurobiology of Aging.

[2]  D. Stephan,et al.  FUS mutations in sporadic amyotrophic lateral sclerosis , 2011, Neurobiology of Aging.

[3]  David Heckerman,et al.  Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study , 2010, The Lancet Neurology.

[4]  A. Farmer,et al.  Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study , 2010, The Lancet Neurology.

[5]  A. Ludolph,et al.  Novel missense and truncating mutations in FUS/TLS in familial ALS , 2010, Neurology.

[6]  I. Mackenzie,et al.  ALS‐associated fused in sarcoma (FUS) mutations disrupt Transportin‐mediated nuclear import , 2010, The EMBO journal.

[7]  A. Eisen,et al.  Fus gene mutations in familial and sporadic amyotrophic lateral sclerosis , 2010, Muscle & nerve.

[8]  C. Jack,et al.  Caudate atrophy on MRI is a characteristic feature of FTLD‐FUS , 2010, European journal of neurology.

[9]  H. Akiyama,et al.  Occurrence of basophilic inclusions and FUS-immunoreactive neuronal and glial inclusions in a case of familial amyotrophic lateral sclerosis , 2010, Journal of the Neurological Sciences.

[10]  E. Mugnaini,et al.  FUS‐immunoreactive inclusions are a common feature in sporadic and non‐SOD1 familial amyotrophic lateral sclerosis , 2010, Annals of neurology.

[11]  R. Petersen,et al.  FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration , 2010, Acta Neuropathologica.

[12]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[13]  A. Goris,et al.  The occurrence of mutations in FUS in a Belgian cohort of patients with familial ALS , 2010, European journal of neurology.

[14]  I. Mackenzie,et al.  FUS‐Immunoreactive Intranuclear Inclusions in Neurodegenerative Disease , 2010, Brain pathology.

[15]  Bruce L. Miller,et al.  Frontotemporal lobar degeneration , 2010, CNS drugs.

[16]  Z. Wszolek,et al.  De novo truncating FUS gene mutation as a cause of sporadic amyotrophic lateral sclerosis , 2010, Human mutation.

[17]  E. Buratti,et al.  Nuclear factor TDP‐43 can affect selected microRNA levels , 2010, The FEBS journal.

[18]  C. van Broeckhoven,et al.  Identification of 2 Loci at chromosomes 9 and 14 in a multiplex family with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2010, Archives of neurology.

[19]  A. Wright,et al.  Transgenic mice expressing mutant forms VCP/p97 recapitulate the full spectrum of IBMPFD including degeneration in muscle, brain and bone. , 2010, Human molecular genetics.

[20]  J. Highley,et al.  Broad clinical phenotypes associated with TAR-DNA binding protein (TARDBP) mutations in amyotrophic lateral sclerosis , 2010, neurogenetics.

[21]  D. Cleveland,et al.  TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. , 2010, Human molecular genetics.

[22]  J. Highley,et al.  Novel FUS/TLS mutations and pathology in familial and sporadic amyotrophic lateral sclerosis. , 2010, Archives of neurology.

[23]  H. Akiyama,et al.  Phosphorylated and cleaved TDP‐43 in ALS, FTLD and other neurodegenerative disorders and in cellular models of TDP‐43 proteinopathy , 2010, Neuropathology : official journal of the Japanese Society of Neuropathology.

[24]  G. Schellenberg,et al.  Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis , 2010, Acta Neuropathologica.

[25]  D. Dickson,et al.  Common Variant in GRN Is a Genetic Risk Factor for Hippocampal Sclerosis in the Elderly , 2010, Neurodegenerative Diseases.

[26]  R. Bowser,et al.  Transgenic Rat Model of Neurodegeneration Caused by Mutation in the TDP Gene , 2010, PLoS genetics.

[27]  T. Iwaki,et al.  Multiple system degeneration with basophilic inclusions in Japanese ALS patients with FUS mutation , 2010, Acta Neuropathologica.

[28]  S. Pereson,et al.  TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration , 2010, Proceedings of the National Academy of Sciences.

[29]  G. Rouleau,et al.  Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. , 2010, Human molecular genetics.

[30]  K. Sleegers,et al.  Genetic contribution of FUS to frontotemporal lobar degeneration , 2010, Neurology.

[31]  Ewout J. N. Groen,et al.  FUS mutations in familial amyotrophic lateral sclerosis in the Netherlands. , 2010, Archives of neurology.

[32]  Y. Kuroiwa,et al.  The RNA-binding protein FUS/TLS is a common aggregate-interacting protein in polyglutamine diseases , 2010, Neuroscience Research.

[33]  M. J. Fresnadillo Martínez,et al.  Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions , 2010, Nature Genetics.

[34]  Jane Y. Wu,et al.  A Drosophila model for TDP-43 proteinopathy , 2010, Proceedings of the National Academy of Sciences.

[35]  S. Finkbeiner,et al.  Cytoplasmic Mislocalization of TDP-43 Is Toxic to Neurons and Enhanced by a Mutation Associated with Familial Amyotrophic Lateral Sclerosis , 2010, The Journal of Neuroscience.

[36]  Tobias M. Rasse,et al.  Knockdown of transactive response DNA‐binding protein (TDP‐43) downregulates histone deacetylase 6 , 2010, The EMBO journal.

[37]  L. Tempest,et al.  TDP-43 and ubiquitinated cytoplasmic aggregates in sporadic ALS are low frequency and widely distributed in the lower motor neuron columns independent of disease spread , 2010, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[38]  I. Tooyama,et al.  Axonal ligation induces transient redistribution of TDP-43 in brainstem motor neurons , 2009, Neuroscience.

[39]  C. Sephton,et al.  TDP-43 Is a Developmentally Regulated Protein Essential for Early Embryonic Development* , 2009, The Journal of Biological Chemistry.

[40]  S. Jiang,et al.  TDP‐43, a neuro‐pathosignature factor, is essential for early mouse embryogenesis , 2009, Genesis.

[41]  M. Kiernan,et al.  FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis , 2009, Journal of Neurology, Neurosurgery & Psychiatry.

[42]  J. V. van Swieten,et al.  Frequency of ubiquitin and FUS-positive, TDP-43-negative frontotemporal lobar degeneration , 2009, Journal of Neurology.

[43]  John Q. Trojanowski,et al.  Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update , 2009, Acta Neuropathologica.

[44]  N. Cairns,et al.  TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration , 2009, Proceedings of the National Academy of Sciences.

[45]  H. Kretzschmar,et al.  A new subtype of frontotemporal lobar degeneration with FUS pathology. , 2009, Brain : a journal of neurology.

[46]  M. Luca,et al.  Mutation within TARDBP leads to Frontotemporal Dementia without motor neuron disease , 2009, Human mutation.

[47]  K. Talbot,et al.  TARDBP in amyotrophic lateral sclerosis: identification of a novel variant but absence of copy number variation , 2009, Journal of Neurology, Neurosurgery & Psychiatry.

[48]  G. Comi,et al.  Mutations of FUS gene in sporadic amyotrophic lateral sclerosis , 2009, Journal of Medical Genetics.

[49]  M. Strong,et al.  Cytosolic TDP-43 expression following axotomy is associated with caspase 3 activation in NFL−/− mice: Support for a role for TDP-43 in the physiological response to neuronal injury , 2009, Brain Research.

[50]  John Q Trojanowski,et al.  Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. , 2009, Human molecular genetics.

[51]  D. Munoz,et al.  FUS pathology in basophilic inclusion body disease , 2009, Acta Neuropathologica.

[52]  J. Landers,et al.  Analysis of FUS gene mutation in familial amyotrophic lateral sclerosis within an Italian cohort , 2009, Neurology.

[53]  V. Meininger,et al.  Mutations in FUS cause FALS and SALS in French and French Canadian populations , 2009, Neurology.

[54]  Ewout J N Groen,et al.  Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis , 2009, Nature Genetics.

[55]  Yubing Lu,et al.  Frontotemporal dementia and amyotrophic lateral sclerosis-associated disease protein TDP-43 promotes dendritic branching , 2009, Molecular Brain.

[56]  B. Ghetti,et al.  TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea , 2009, Movement disorders : official journal of the Movement Disorder Society.

[57]  Jimmy K. Eng,et al.  Quantitative Phosphoproteomic Analysis of T Cell Receptor Signaling Reveals System-Wide Modulation of Protein-Protein Interactions , 2009, Science Signaling.

[58]  H. Kretzschmar,et al.  Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease , 2009, Acta Neuropathologica.

[59]  P. Deyn,et al.  Neuronal inclusion protein TDP-43 has no primary genetic role in FTD and ALS , 2009, Neurobiology of Aging.

[60]  A. Rovelet-Lecrux,et al.  Recent insights into the molecular genetics of dementia , 2009, Trends in Neurosciences.

[61]  E. Kremmer,et al.  Proteolytic processing of TAR DNA binding protein‐43 by caspases produces C‐terminal fragments with disease defining properties independent of progranulin , 2009, Journal of neurochemistry.

[62]  A. Chiò,et al.  Two Italian kindreds with familial amyotrophic lateral sclerosis due to FUS mutation , 2009, Neurobiology of Aging.

[63]  H. Akiyama,et al.  Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43 , 2009, Alzheimer's & Dementia.

[64]  G. Sobue,et al.  TDP-43 Depletion Induces Neuronal Cell Damage through Dysregulation of Rho Family GTPases* , 2009, The Journal of Biological Chemistry.

[65]  A. Gitler,et al.  TDP-43 Is Intrinsically Aggregation-prone, and Amyotrophic Lateral Sclerosis-linked Mutations Accelerate Aggregation and Increase Toxicity* , 2009, The Journal of Biological Chemistry.

[66]  D. Dickson,et al.  Evaluation of subcortical pathology and clinical correlations in FTLD-U subtypes , 2009, Acta Neuropathologica.

[67]  A. D’Ambrogio,et al.  Depletion of TDP‐43 affects Drosophila motoneurons terminal synapsis and locomotive behavior , 2009, FEBS letters.

[68]  C. Duyckaerts,et al.  Accumulation of TDP-43 and α-actin in an amyotrophic lateral sclerosis patient with the K17I ANG mutation , 2009, Acta Neuropathologica.

[69]  S. Heath,et al.  Chromosome 9p-linked families with frontotemporal dementia associated with motor neuron disease , 2009, Neurology.

[70]  A. D’Ambrogio,et al.  Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo , 2009, Nucleic acids research.

[71]  L. Petrucelli,et al.  Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity , 2009, Proceedings of the National Academy of Sciences.

[72]  K. Sleegers,et al.  Serum biomarker for progranulin‐associated frontotemporal lobar degeneration , 2009, Annals of neurology.

[73]  M. Farrer,et al.  Pallidonigral TDP-43 pathology in Perry syndrome. , 2009, Parkinsonism & related disorders.

[74]  C. Jack,et al.  Prominent phenotypic variability associated with mutations in Progranulin , 2009, Neurobiology of Aging.

[75]  B. Castellotti,et al.  High frequency of TARDBP gene mutations in Italian patients with amyotrophic lateral sclerosis , 2009, Human mutation.

[76]  N. Luquin,et al.  TDP‐43 neuropathology is similar in sporadic amyotrophic lateral sclerosis with or without TDP‐43 mutations , 2009, Neuropathology and applied neurobiology.

[77]  B. Dubois,et al.  TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration , 2009, Annals of neurology.

[78]  D. Dickson,et al.  Mimicking aspects of frontotemporal lobar degeneration and Lou Gehrig's disease in rats via TDP-43 overexpression. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[79]  J. Trojanowski,et al.  Expression of TDP-43 C-terminal Fragments in Vitro Recapitulates Pathological Features of TDP-43 Proteinopathies* , 2009, Journal of Biological Chemistry.

[80]  G. Binetti,et al.  Progranulin Leu271LeufsX10 is one of the most common FTLD and CBS associated mutations worldwide , 2009, Neurobiology of Disease.

[81]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[82]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[83]  John L. Robinson,et al.  Clinical and pathological continuum of multisystem TDP-43 proteinopathies. , 2009, Archives of neurology.

[84]  R. Petersen,et al.  Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members , 2009, Brain : a journal of neurology.

[85]  S. Clarke,et al.  Protein arginine methylation in mammals: who, what, and why. , 2009, Molecular cell.

[86]  H. Akiyama,et al.  Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies , 2009, Acta Neuropathologica.

[87]  M. Farrer,et al.  DCTN1 mutations in Perry syndrome , 2009, Nature Genetics.

[88]  J. Trojanowski,et al.  Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies , 2009, Acta Neuropathologica.

[89]  V. Kimonis,et al.  VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. , 2008, Biochimica et biophysica acta.

[90]  Andrea D'Ambrogio,et al.  Structural determinants of the cellular localization and shuttling of TDP-43 , 2008, Journal of Cell Science.

[91]  J. Trojanowski,et al.  TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2008, Archives of neurology.

[92]  V. Meininger,et al.  Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis , 2008, Journal of Medical Genetics.

[93]  J. Rouse,et al.  Identification and characterization of FUS/TLS as a new target of ATM. , 2008, The Biochemical journal.

[94]  G. Binetti,et al.  Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration , 2008, Neurology.

[95]  D. Geschwind,et al.  Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis , 2008, PLoS genetics.

[96]  P. Schofield,et al.  Pedigree with frontotemporal lobar degeneration – motor neuron disease and Tar DNA binding protein-43 positive neuropathology: genetic linkage to chromosome 9 , 2008, BMC neurology.

[97]  K. Sleegers,et al.  Genetic variability in progranulin contributes to risk for clinically diagnosed Alzheimer disease , 2008, Neurology.

[98]  R. Petersen,et al.  Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia , 2008, Human molecular genetics.

[99]  C. Broeckhoven,et al.  Progranulin genetic variability contributes to amyotrophic lateral sclerosis , 2008, Neurology.

[100]  S. Nakano,et al.  Immunohistochemical identification of messenger RNA-related proteins in basophilic inclusions of adult-onset atypical motor neuron disease , 2008, Acta Neuropathologica.

[101]  A. Ståhlberg,et al.  The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response , 2008, BMC Cell Biology.

[102]  J. Trojanowski,et al.  Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2008, The American journal of pathology.

[103]  M. Morita,et al.  Phosphorylated TDP‐43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis , 2008, Annals of neurology.

[104]  H. Kretzschmar,et al.  TDP-43-negative FTLD-U is a significant new clinico-pathological subtype of FTLD , 2008, Acta Neuropathologica.

[105]  J. Trojanowski,et al.  Concomitant TAR-DNA-Binding Protein 43 Pathology Is Present in Alzheimer Disease and Corticobasal Degeneration but Not in Other Tauopathies , 2008, Journal of neuropathology and experimental neurology.

[106]  D. Neary,et al.  TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration , 2008, Acta Neuropathologica.

[107]  J. Trojanowski,et al.  Disturbance of Nuclear and Cytoplasmic TAR DNA-binding Protein (TDP-43) Induces Disease-like Redistribution, Sequestration, and Aggregate Formation* , 2008, Journal of Biological Chemistry.

[108]  B. McConkey,et al.  TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis , 2008, Nature Genetics.

[109]  J. Trojanowski,et al.  Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. , 2008, Archives of neurology.

[110]  I-Fan Wang,et al.  TDP‐43, the signature protein of FTLD‐U, is a neuronal activity‐responsive factor , 2008, Journal of neurochemistry.

[111]  Murray Grossman,et al.  TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis , 2008, The Lancet Neurology.

[112]  I. Mackenzie,et al.  Atypical frontotemporal lobar degeneration with ubiquitin-positive, TDP-43-negative neuronal inclusions. , 2008, Brain : a journal of neurology.

[113]  H. Akiyama,et al.  Basophilic inclusion body disease and neuronal intermediate filament inclusion disease: a comparative clinicopathological study , 2008, Acta Neuropathologica.

[114]  S. Lindquist,et al.  A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity , 2008, Proceedings of the National Academy of Sciences.

[115]  J. Morris,et al.  TAR DNA-Binding Protein 43 Immunohistochemistry Reveals Extensive Neuritic Pathology in FTLD-U: A Midwest-Southwest Consortium for FTLD Study , 2008, Journal of neuropathology and experimental neurology.

[116]  A. Kakita,et al.  TDP‐43 mutation in familial amyotrophic lateral sclerosis , 2008, Annals of neurology.

[117]  J. Morris,et al.  TDP‐43 A315T mutation in familial motor neuron disease , 2008, Annals of neurology.

[118]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[119]  Tom Misteli,et al.  TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression , 2008, Proceedings of the National Academy of Sciences.

[120]  Eric Guedj,et al.  Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. , 2008, Brain : a journal of neurology.

[121]  G. Rouleau,et al.  Genetics of familial amyotrophic lateral sclerosis , 2008, Neurology.

[122]  C. Broeckhoven,et al.  Progranulin locus deletion in frontotemporal dementia , 2008, Human mutation.

[123]  H. Arai,et al.  Concurrence of TDP-43, tau and α-synuclein pathology in brains of Alzheimer's disease and dementia with Lewy bodies , 2007, Brain Research.

[124]  J. Trojanowski,et al.  Severe subcortical TDP-43 pathology in sporadic frontotemporal lobar degeneration with motor neuron disease , 2007, Acta Neuropathologica.

[125]  D. Geschwind,et al.  Phenotypic variability associated with progranulin haploinsufficiency in patients with the common 1477C→T (Arg493X) mutation: an international initiative , 2007, The Lancet Neurology.

[126]  L. Petrucelli,et al.  Progranulin Mediates Caspase-Dependent Cleavage of TAR DNA Binding Protein-43 , 2007, The Journal of Neuroscience.

[127]  M. Hutton,et al.  The genetics of frontotemporal lobar degeneration , 2007, Current neurology and neuroscience reports.

[128]  A. Kakita,et al.  TDP-43-immunoreactive neuronal and glial inclusions in the neostriatum in amyotrophic lateral sclerosis with and without dementia , 2007, Acta Neuropathologica.

[129]  J. Trojanowski,et al.  Pathological TDP-43 in parkinsonism–dementia complex and amyotrophic lateral sclerosis of Guam , 2007, Acta Neuropathologica.

[130]  K. Taylor,et al.  Hippocampal sclerosis dementia: a reappraisal , 2007, Acta Neuropathologica.

[131]  J. Morris,et al.  TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. , 2007, The American journal of pathology.

[132]  J. Schneider,et al.  Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration , 2007, Acta Neuropathologica.

[133]  D. Dickson,et al.  TDP-43 in differential diagnosis of motor neuron disorders , 2007, Acta Neuropathologica.

[134]  David Mann,et al.  Frontotemporal lobar degeneration: clinical and pathological relationships , 2007, Acta Neuropathologica.

[135]  M. Strong,et al.  TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein , 2007, Molecular and Cellular Neuroscience.

[136]  D. Dickson,et al.  TDP‐43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease , 2007, Annals of neurology.

[137]  H. Akiyama,et al.  TDP-43 is deposited in the Guam parkinsonism-dementia complex brains. , 2007, Brain : a journal of neurology.

[138]  J. Trojanowski,et al.  Pathological TDP‐43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations , 2007, Annals of neurology.

[139]  Roland G Henry,et al.  Continuum of frontal lobe impairment in amyotrophic lateral sclerosis. , 2007, Archives of neurology.

[140]  P. Pietrini,et al.  Clinicopathologic features of frontotemporal dementia with Progranulin sequence variation , 2007, Neurology.

[141]  Murray Grossman,et al.  TDP-43-Positive White Matter Pathology in Frontotemporal Lobar Degeneration With Ubiquitin-Positive Inclusions , 2007, Journal of neuropathology and experimental neurology.

[142]  A. Kakita,et al.  TDP-43 immunoreactivity in neuronal inclusions in familial amyotrophic lateral sclerosis with or without SOD1 gene mutation , 2007, Acta Neuropathologica.

[143]  R. Petersen,et al.  Neuropathologic Features of Frontotemporal Lobar Degeneration With Ubiquitin-Positive Inclusions With Progranulin Gene (PGRN) Mutations , 2007, Journal of neuropathology and experimental neurology.

[144]  N. Cairns,et al.  TDP‐43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations , 2007, Journal of neuropathology and experimental neurology.

[145]  V. Meininger,et al.  Three families with amyotrophic lateral sclerosis and frontotemporal dementia with evidence of linkage to chromosome 9p. , 2007, Archives of neurology.

[146]  D. Neary,et al.  Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43 , 2007, Acta Neuropathologica.

[147]  H. Akiyama,et al.  TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2006, Biochemical and biophysical research communications.

[148]  A. Singleton,et al.  Suppression of MMP-9 by doxycycline in brain arteriovenous malformations , 2004, BMC neurology.

[149]  J. Hardy,et al.  Novel splicing mutation in the progranulin gene causing familial corticobasal syndrome. , 2006, Brain : a journal of neurology.

[150]  H. Feldman,et al.  The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. , 2006, Brain : a journal of neurology.

[151]  S. Melquist,et al.  Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. , 2006, Human molecular genetics.

[152]  H. Gehring,et al.  Identification and characterization of the nuclear localization/retention signal in the EWS proto-oncoprotein. , 2006, Journal of molecular biology.

[153]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[154]  D. Cleveland,et al.  ALS: A Disease of Motor Neurons and Their Nonneuronal Neighbors , 2006, Neuron.

[155]  J. Trojanowski,et al.  Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. , 2006, The American journal of pathology.

[156]  J. Shiota,et al.  An autopsy case of frontotemporal dementia with severe dysarthria and motor neuron disease showing numerous basophilic inclusions , 2006, Neuropathology : official journal of the Japanese Society of Neuropathology.

[157]  Julie S. Snowden,et al.  Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype , 2006, Acta Neuropathologica.

[158]  J. Morris,et al.  HDDD2 is a familial frontotemporal lobar degeneration with ubiquitin‐positive, tau‐negative inclusions caused by a missense mutation in the signal peptide of progranulin , 2006, Annals of neurology.

[159]  C. Duijn,et al.  Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 , 2006, Nature.

[160]  S. Melquist,et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.

[161]  Y. Chook,et al.  Rules for Nuclear Localization Sequence Recognition by Karyopherinβ2 , 2006, Cell.

[162]  Charles D. Smith,et al.  Novel Ubiquitin Neuropathology in Frontotemporal Dementia With Valosin-Containing Protein Gene Mutations , 2006, Journal of neuropathology and experimental neurology.

[163]  F. Baas,et al.  Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2-21.3. , 2006, Brain : a journal of neurology.

[164]  Ronald C Petersen,et al.  Clinically undetected motor neuron disease in pathologically proven frontotemporal lobar degeneration with motor neuron disease. , 2006, Archives of neurology.

[165]  H. Horvitz,et al.  A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia , 2006, Neurology.

[166]  G. Hicks,et al.  TLS, EWS and TAF15: a model for transcriptional integration of gene expression. , 2006, Briefings in functional genomics & proteomics.

[167]  Ralf Janknecht,et al.  EWS-ETS oncoproteins: the linchpins of Ewing tumors. , 2005, Gene.

[168]  T. Takumi,et al.  TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines , 2005, Journal of Cell Science.

[169]  E. Buratti,et al.  TDP-43 Binds Heterogeneous Nuclear Ribonucleoprotein A/B through Its C-terminal Tail , 2005, Journal of Biological Chemistry.

[170]  S. Reske,et al.  Heterozygous R1101K mutation of the DCTN1 gene in a family with ALS and FTD , 2005, Annals of neurology.

[171]  I. Mackenzie,et al.  Ubiquitin Immunohistochemistry Suggests Classic Motor Neuron Disease, Motor Neuron Disease With Dementia, and Frontotemporal Dementia of the Motor Neuron Disease Type Represent a Clinicopathologic Spectrum , 2005, Journal of neuropathology and experimental neurology.

[172]  G. Hicks,et al.  The RNA Binding Protein TLS Is Translocated to Dendritic Spines by mGluR5 Activation and Regulates Spine Morphology , 2005, Current Biology.

[173]  A. Krainer,et al.  Regulation of heterogenous nuclear ribonucleoprotein A1 transport by phosphorylation in cells stressed by osmotic shock. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[174]  M. Mann,et al.  Identifying and quantifying in vivo methylation sites by heavy methyl SILAC , 2004, Nature Methods.

[175]  J. Trojanowski,et al.  Clinical and neuropathologic variation in neuronal intermediate filament inclusion disease , 2004, Neurology.

[176]  A. Ludolph,et al.  Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS , 2004, Neurology.

[177]  A. Pestronk,et al.  Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein , 2004, Nature Genetics.

[178]  Nick C Fox,et al.  Neurofilament inclusion body disease: a new proteinopathy? , 2003, Brain : a journal of neurology.

[179]  Juri Rappsilber,et al.  Detection of arginine dimethylated peptides by parallel precursor ion scanning mass spectrometry in positive ion mode. , 2003, Analytical chemistry.

[180]  Ian G. McKeith,et al.  Patients with a novel neurofilamentopathy: dementia with neurofilament inclusions , 2003, Neuroscience Letters.

[181]  Shin J. Oh,et al.  Mutant dynactin in motor neuron disease , 2003, Nature Genetics.

[182]  H. Feldman,et al.  Neuronal intranuclear inclusions distinguish familial FTD-MND type from sporadic cases , 2003, Acta Neuropathologica.

[183]  Catherine Lomen-Hoerth,et al.  The overlap of amyotrophic lateral sclerosis and frontotemporal dementia , 2002, Neurology.

[184]  B Miller,et al.  Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. , 2001, Archives of neurology.

[185]  T. Dörk,et al.  Nuclear factor TDP‐43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping , 2001, The EMBO journal.

[186]  K. Abe,et al.  Familial amyotrophic lateral sclerosis with posterior column degeneration and basophilic inclusion bodies: a clinical, genetic and pathological study. , 2001, Clinical neuropathology.

[187]  K. Kikuchi,et al.  Basophilic cytoplasmic inclusions in a case of sporadic juvenile amyotrophic lateral sclerosis , 2000, Journal of the Neurological Sciences.

[188]  D. D. de Rooij,et al.  Male sterility and enhanced radiation sensitivity in TLS−/− mice , 2000, The EMBO journal.

[189]  H. Ruley,et al.  Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death , 2000, Nature Genetics.

[190]  L. Bruijn,et al.  Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. , 1998, Science.

[191]  D. Immanuel,et al.  TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling. , 1997, Journal of cell science.

[192]  P. Chambon,et al.  hTAF(II)68, a novel RNA/ssDNA‐binding protein with homology to the pro‐oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II. , 1996, The EMBO journal.

[193]  H. Kusaka,et al.  Adult-onset motor neuron disease with basophilic intraneuronal inclusion bodies. , 1993, Clinical neuropathology.

[194]  G. Marconi,et al.  Sporadic juvenile amyotrophic lateral sclerosis. , 1993, Acta neurologica.

[195]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[196]  N. Murakami,et al.  Basophilic inclusions in sporadic juvenile amyotrophic lateral sclerosis: an immunocytochemical and ultrastructural study , 1992, Acta Neuropathologica.

[197]  S. Ludwin,et al.  Classic and generalized variants of Pick's disease: A clinicopathological, ultrastructural, and immunocytochemical comparative study , 1984, Annals of neurology.

[198]  J. Nelson,et al.  Sporadic juvenile amyotrophic lateral sclerosis. A clinicopathological study of a case with neuronal cytoplasmic inclusions containing RNA. , 1972, Archives of neurology.

[199]  M. Itokawa,et al.  TDP-43 M337V mutation in familial amyotrophic lateral sclerosis in Japan. , 2010, Internal medicine.

[200]  N. Bresolin,et al.  GRN variability contributes to sporadic frontotemporal lobar degeneration. , 2010, Journal of Alzheimer's disease : JAD.

[201]  E. Buratti,et al.  Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. , 2008, Frontiers in bioscience : a journal and virtual library.

[202]  Hurng‐Yi Wang,et al.  Structural diversity and functional implications of the eukaryotic TDP gene family. , 2004, Genomics.

[203]  K. Tashiro,et al.  Dementia with ALS features and diffuse Pick body-like inclusions (atypical Pick's disease?). , 1995, Clinical neuropathology.