Multiple scales in streamer discharges, with an emphasis on moving boundary approximations

Streamer discharges determine the very first stage of sparks or lightning, and they govern the evolution of huge sprite discharges above thunderclouds as well as the operation of corona reactors in plasma technology. Streamers are nonlinear structures with multiple inner scales. After briefly reviewing basic observations, experiments and the microphysics, we start from density models for streamers, i.e. from reaction–drift–diffusion equations for charged-particle densities coupled to the Poisson equation of electrostatics, and focus on derivation and solution of moving boundary approximations for the density models. We recall that so-called negative streamers are linearly stable against branching (and we conjecture this for positive streamers as well), and that streamer groups in two dimensions are well approximated by the classical Saffman–Taylor finger of two fluid flow. We draw conclusions on streamer physics, and we identify open problems in the moving boundary approximations.

[1]  Dombre,et al.  Selection in the Saffman-Taylor bubble and asymmetrical finger problem. , 1988, Physical review. A, General physics.

[2]  Ute Ebert,et al.  Streamers, sprites, leaders, lightning: from micro- to macroscales , 2008, 0811.2075.

[3]  Manuel Arrayás,et al.  Fingering from Ionization Fronts in Plasmas , 2008, SIAM J. Appl. Math..

[4]  U. Ebert,et al.  Reconnection and merging of positive streamers in air , 2008, 0810.4443.

[5]  S. Pancheshnyi,et al.  COMMENT: Comments on `The role of photoionization in positive streamer dynamics' , 2001 .

[6]  Georgios Veronis,et al.  Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders , 2006 .

[7]  Ute Ebert,et al.  Density models for streamer discharges: Beyond cylindrical symmetry and homogeneous media , 2010, J. Comput. Phys..

[8]  P. Williams,et al.  Two‐dimensional studies of streamers in gases , 1987 .

[9]  David Terman,et al.  Stability of planar wave solutions to combustion model , 1990 .

[10]  U. Ebert,et al.  Sprites in varying air density: Charge conservation, glowing negative trails and changing velocity , 2010 .

[11]  W. Hundsdorfer,et al.  Numerical convergence of the branching time of negative streamers. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  T. E. Nelson,et al.  Submillisecond imaging of sprite development and structure , 2006 .

[13]  U. Ebert,et al.  Streamer branching rationalized by conformal mapping techniques. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Ute Ebert,et al.  Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy , 2008, 0805.1376.

[15]  M. Nudnova,et al.  Streamer head structure: role of ionization and photoionization , 2008 .

[16]  S. Tanveer New solutions for steady bubbles in a Hele–Shaw cell , 1987 .

[17]  G. Taylor,et al.  The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[18]  van Ejm Bert Heesch,et al.  Analysis of streamer properties in air as function of pulse and reactor parameters by ICCD photography , 2008 .

[19]  W. Saarloos,et al.  Front propagation into unstable states : universal algebraic convergence towards uniformly translating pulled fronts , 2000, cond-mat/0003181.

[20]  Willem Hundsdorfer,et al.  3D hybrid computations for streamer discharges and production of runaway electrons , 2009, 0907.0555.

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Bardsley,et al.  Simulation of negative-streamer dynamics in nitrogen. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  Ningyu Liu,et al.  Effects of photoionization on similarity properties of streamers at various pressures in air , 2006 .

[24]  Chao Li,et al.  Spatially hybrid computations for streamer discharges with generic features of pulled fronts: I. Planar fronts , 2009, J. Comput. Phys..

[25]  Ute Ebert,et al.  Laplacian Instability of Planar Streamer Ionization Fronts—An Example of Pulled Front Analysis , 2008, J. Nonlinear Sci..

[26]  W. Saarloos,et al.  PROPAGATION AND STRUCTURE OF PLANAR STREAMER FRONTS , 1997, patt-sol/9702006.

[27]  B. Davidovitch,et al.  Moving boundary approximation for curved streamer ionization fronts: solvability analysis. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  W. Saarloos Three basic issues concerning interface dynamics in nonequilibrium pattern formation , 1998, patt-sol/9801002.

[29]  O. Chanrion,et al.  Production of runaway electrons by negative streamer discharges , 2010 .

[30]  Willem Hundsdorfer,et al.  An adaptive grid refinement strategy for the simulation of negative streamers , 2006, J. Comput. Phys..

[31]  Lothar Schäfer,et al.  Construction and test of a moving boundary model for negative streamer discharges. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  W. Hundsdorfer,et al.  Branching of negative streamers in free flight. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Willem Hundsdorfer,et al.  Ebert and Hundsdorfer Reply , 2002 .

[34]  U. Ebert,et al.  Time Resolved Measurements of Streamer Inception in Air , 2008, IEEE Transactions on Plasma Science.

[35]  Ningyu Liu,et al.  Effects of photoionization on propagation and branching of positive and negative streamers in sprites , 2004 .

[36]  W. Brok,et al.  Deviations from the local field approximation in negative streamer heads , 2007, physics/0702129.

[37]  Ute Ebert,et al.  Saffman-Taylor streamers: mutual finger interaction in spark formation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  U. Ebert,et al.  Positive streamers in air and nitrogen of varying density: experiments on similarity laws , 2008, 0805.1364.

[39]  A. Luque,et al.  Probing photoionization : simulations of positive streamers in varying N 2 : O 2-mixtures , 2010 .

[40]  L. Schäfer,et al.  A moving boundary problem motivated by electric breakdown, I: Spectrum of linear perturbations , 2008, 0809.0319.

[41]  A. Kulikovsky Positive streamer between parallel plate electrodes in atmospheric pressure air , 1997 .

[42]  Z. Petrović,et al.  Non-equilibrium transport of positron and electron swarms in gases and liquids , 2010 .

[43]  W. Hundsdorfer,et al.  Interaction of streamer discharges in air and other oxygen-nitrogen mixtures. , 2007, Physical review letters.

[44]  A. Kulikovsky The role of photoionization in positive streamer dynamics , 2000 .

[45]  Matthew G. McHarg,et al.  High time-resolution sprite imaging: observations and implications , 2008 .

[46]  M. McHarg,et al.  Streamer tip splitting in sprites , 2010 .

[47]  S. Pancheshnyi,et al.  Two-dimensional numerical modelling of the cathode-directed streamer development in a long gap at high voltage , 2003 .

[48]  Lothar Schäfer,et al.  Regularization of moving boundaries in a laplacian field by a mixed Dirichlet-Neumann boundary condition: exact results. , 2005, Physical review letters.

[49]  W. Hundsdorfer,et al.  Photoionization in negative streamers: Fast computations and two propagation modes , 2006, physics/0609247.

[51]  N. Babaeva,et al.  Two-dimensional modelling of positive streamer dynamics in non-uniform electric fields in air , 1996 .

[52]  Manuel Arrayás,et al.  Stability of negative ionization fronts: Regularization by electric screening? , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Lothar Schäfer,et al.  Convective Stabilization of a Laplacian Moving Boundary Problem with Kinetic Undercooling , 2007, SIAM J. Appl. Math..

[54]  U. Ebert,et al.  Probing photo-ionization: experiments on positive streamers in pure gases and mixtures , 2009, 0912.0894.

[55]  A. Luque,et al.  Probing photo-ionization: simulations of positive streamers in varying N2 : O2-mixtures , 2010, 1008.3309.

[56]  Ute Ebert,et al.  Breakdown of the standard perturbation theory and moving boundary approximation for "pulled" fronts , 2000 .

[57]  B. Davidovitch,et al.  Moving-boundary approximation for curved streamer ionization fronts: numerical tests. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  C. Kao,et al.  A moving boundary model motivated by electric breakdown: II. Initial value problem , 2009, 0908.2521.

[59]  A. Kulikovsky Comment on "Spontaneous branching of anode-directed streamers between planar electrodes". , 2002, Physical review letters.

[60]  S. Starikovskaia,et al.  Role of photoionization processes in propagation of cathode-directed streamer , 2001 .

[61]  S Dujko,et al.  Benchmark calculations of nonconservative charged-particle swarms in dc electric and magnetic fields crossed at arbitrary angles. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  A. Luque,et al.  Positive and negative streamers in ambient air: modelling evolution and velocities , 2008, 0804.3539.

[63]  U. Ebert,et al.  Stereo-photography of streamers in air , 2008, 0802.3639.

[64]  P. Blom High-power pulsed corona , 1997 .

[65]  C. Price,et al.  Sprite discharges on Venus and Jupiter-like planets: a laboratory investigation. , 2010, 1003.0207.

[66]  Olivier Chanrion,et al.  A PIC-MCC code for simulation of streamer propagation in air , 2008, J. Comput. Phys..

[67]  Herbert Levine,et al.  Pattern selection in fingered growth phenomena , 1988 .

[68]  van Saarloos W,et al.  Streamer Propagation as a Pattern Formation Problem: Planar Fronts. , 1996, Physical review letters.

[69]  K. Ness,et al.  Development of swarm transport theory in radio-frequency electric and crossed electric and magnetic fields , 2002 .

[70]  Todd Kapitula,et al.  Eigenvalues and resonances using the Evans function , 2004 .

[71]  W. Hundsdorfer,et al.  The multiscale nature of streamers , 2006, physics/0604023.

[72]  O. Ducasse,et al.  Experimental analysis and modelling of positive streamer in air: towards an estimation of O and N radical production , 2008 .

[73]  P. Pelcé Dynamics of curved fronts , 1988 .

[74]  J. Alexander,et al.  A topological invariant arising in the stability analysis of travelling waves. , 1990 .

[75]  Ute Ebert,et al.  Emergence of sprite streamers from screening-ionization waves in the lower ionosphere , 2009 .

[76]  Chao Li,et al.  Spatially hybrid computations for streamer discharges : II. Fully 3D simulations , 2011, J. Comput. Phys..

[77]  Willem Hundsdorfer,et al.  Spontaneous branching of anode-directed streamers between planar electrodes. , 2001, Physical review letters.

[78]  Chao Tang,et al.  Viscous flows in two dimensions , 1986 .

[79]  R. Robson,et al.  Recent advances in the application of Boltzmann equation and fluid equation methods to charged particle transport in non-equilibrium plasmas , 2009 .

[80]  John R. King,et al.  The selection of Saffman-Taylor fingers by kinetic undercooling , 2003 .

[81]  Ute Ebert,et al.  Erratum to Laplacian Instability of Planar Streamer Ionization Fronts—An Example of Pulled Front Analysis , 2007, J. Nonlinear Sci..

[82]  Wu,et al.  Formation and propagation of streamers in N2 and N2-SF6 mixtures. , 1988, Physical review. A, General physics.

[83]  S. Pancheshnyi,et al.  Development of a cathode-directed streamer discharge in air at different pressures: experiment and comparison with direct numerical simulation. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  Dhali,et al.  Numerical simulation of streamer propagation in nitrogen at atmospheric pressure. , 1985, Physical review. A, General physics.

[85]  Saleh Tanveer,et al.  Surprises in viscous fingering , 2000, Journal of Fluid Mechanics.

[86]  S. Pancheshnyi Role of electronegative gas admixtures in streamer start, propagation and branching phenomena , 2005 .

[87]  Ningyu Liu,et al.  Model of sprite luminous trail caused by increasing streamer current , 2010 .

[88]  Manuel Arrayás,et al.  Mechanism of branching in negative ionization fronts. , 2005, Physical review letters.

[89]  B. Sandstede,et al.  Chapter 18 - Stability of Travelling Waves , 2002 .

[90]  S. Howison Cusp Development in Hele–Shaw Flow with a Free Surface , 1986 .