Quadrotor UAVs are one of the most preferred types of small unmanned aerial vehicles, due to their modest mechanical structure and propulsion precept. However, the complex non-linear dynamic behavior of the Proportional Integral Derivative (PID) controller in these vehicles requires advanced stabilizing control of their movement. Additionally, locating the appropriate gain for a model-based controller is relatively complex and demands a significant amount of time, as it relies on external perturbations and the dynamic modeling of plants. Therefore, developing a method for the tuning of quadcopter PID parameters may save effort and time, and better control performance can be realized. Traditional methods, such as Ziegler–Nichols (ZN), for tuning quadcopter PID do not provide optimal control and might leave the system with potential instability and cause significant damage. One possible approach that alleviates the tough task of nonlinear control design is the use of meta-heuristics that permit appropriate control actions. This study presents PID controller tuning using meta-heuristic algorithms, such as Genetic Algorithms (GAs), the Crow Search Algorithm (CSA) and Particle Swarm Optimization (PSO) to stabilize quadcopter movements. These meta-heuristics were used to control the position and orientation of a PID controller based on a fitness function proposed to reduce overshooting by predicting future paths. The obtained results confirmed the efficacy of the proposed controller in felicitously and reliably controlling the flight of a quadcopter based on GA, CSA and PSO. Finally, the simulation results related to quadcopter movement control using PSO presented impressive control results, compared to GA and CSA.