An Improved Algorithm for Parameterized Edge Dominating Set Problem

An edge dominating set of a graph G = (V, E) is a subset M ⊆ E of edges such that each edge in E ∖ M is incident to at least one edge in M. In this paper, we consider the parameterized edge dominating set problem which asks us to test whether a given graph has an edge dominating set with size bounded from above by an integer k or not, and we design an O*(2.2351 k )-time and polynomial-space algorithm. This is an improvement over the previous best time bound of O*(2.3147 k ). We also show that a related problem: the parameterized weighted edge dominating set problem can be solved in O*(2.2351 k ) time and polynomial space.

[1]  Saket Saurabh,et al.  Efficient Exact Algorithms through Enumerating Maximal Independent Sets and Other Techniques , 2007, Theory of Computing Systems.

[2]  Henning Fernau,et al.  Enumerate and Measure: Improving Parameter Budget Management , 2010, IPEC.

[3]  Henning Fernau,et al.  edge dominating set: Efficient Enumeration-Based Exact Algorithms , 2006, IWPEC.

[4]  Hiroshi Nagamochi,et al.  Exact Algorithms for Annotated Edge Dominating Set in Graphs with Degree Bounded by 3 , 2013, IEICE Trans. Inf. Syst..

[5]  Fedor V. Fomin,et al.  On Two Techniques of Combining Branching and Treewidth , 2009, Algorithmica.

[6]  Hiroshi Nagamochi,et al.  A Refined Exact Algorithm for Edge Dominating Set , 2012, TAMC.

[7]  Mingyu Xiao,et al.  New parameterized algorithms for the edge dominating set problem , 2013, Theor. Comput. Sci..

[8]  Mihalis Yannakakis,et al.  Edge Dominating Sets in Graphs , 1980 .

[9]  Hans L. Bodlaender,et al.  Exact Algorithms for Edge Domination , 2011, Algorithmica.

[10]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[11]  Vangelis Th. Paschos,et al.  New Results on Polynomial Inapproximabilityand Fixed Parameter Approximability of Edge Dominating Set , 2014, Theory of Computing Systems.

[12]  Hiroshi Nagamochi,et al.  Parameterized Edge Dominating Set in Cubic Graphs - (Extended Abstract) , 2011, FAW-AAIM.

[13]  Ge Xia,et al.  Improved upper bounds for vertex cover , 2010, Theor. Comput. Sci..

[14]  Henning Fernau,et al.  Parameterized Measure & Conquer for Problems with No Small Kernels , 2011, Algorithmica.

[15]  Mingyu Xiao A Simple and Fast Algorithm for Maximum Independent Set in 3-Degree Graphs , 2010, WALCOM.