A Generative Shape Regularization Model for Robust Face Alignment

In this paper, we present a robust face alignment system that is capable of dealing with exaggerating expressions, large occlusions, and a wide variety of image noises. The robustness comes from our shape regularization model, which incorporates constrained nonlinear shape prior, geometric transformation, and likelihood of multiple candidate landmarks in a three-layered generative model. The inference algorithm iteratively examines the best candidate positions and updates face shape and pose. This model can effectively recover sufficient shape details from very noisy observations. We demonstrate the performance of this approach on two public domain databases and a large collection of real-world face photographs.

[1]  Ulf Grenander,et al.  Hands: A Pattern Theoretic Study of Biological Shapes , 1990 .

[2]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[3]  Yali Amit,et al.  Graphical Templates for Model Registration , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Michael E. Tipping,et al.  Mixtures of Principal Component Analysers , 1997 .

[5]  Takeo Kanade,et al.  Rotation Invariant Neural Network-Based Face Detection , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[6]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[7]  Daniel Snow,et al.  Efficient optimization of a deformable template using dynamic programming , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[8]  A. Martínez,et al.  The AR face databasae , 1998 .

[9]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[10]  Thomas Vetter,et al.  A morphable model for the synthesis of 3D faces , 1999, SIGGRAPH.

[11]  Timothy F. Cootes,et al.  A mixture model for representing shape variation , 1999, Image Vis. Comput..

[12]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Christopher J. Taylor,et al.  Kernel Principal Component Analysis and the construction of non-linear Active Shape Models , 2001, BMVC.

[14]  James M. Coughlan,et al.  Finding Deformable Shapes Using Loopy Belief Propagation , 2002, ECCV.

[15]  Yi Zhou,et al.  Bayesian tangent shape model: estimating shape and pose parameters via Bayesian inference , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[16]  Jiří Matas,et al.  Computer Vision - ECCV 2004 , 2004, Lecture Notes in Computer Science.

[17]  Zicheng Liu,et al.  Robust and Rapid Generation of Animated Faces from Video Images: A Model-Based Modeling Approach , 2004, International Journal of Computer Vision.

[18]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[19]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[20]  Alan L. Yuille,et al.  Feature extraction from faces using deformable templates , 2004, International Journal of Computer Vision.

[21]  Harry Shum,et al.  A Bayesian mixture model for multi-view face alignment , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[22]  Alfred C. Weaver,et al.  Biometric authentication , 2006, Computer.

[23]  Takeo Kanade,et al.  3D Alignment of Face in a Single Image , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[24]  Harry Shum,et al.  Accurate Face Alignment using Shape Constrained Markov Network , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[25]  B. K. Julsing,et al.  Face Recognition with Local Binary Patterns , 2012 .

[26]  Timothy F. Cootes,et al.  Boosted Regression Active Shape Models , 2007, BMVC.