Spacelike matching to null infinity

We present two methods to include the asymptotic domain of a background spacetime in null directions for numerical solutions of evolution equations so that both the radiation extraction problem and the outer boundary problem are solved. The first method is based on the geometric conformal approach, the second is a coordinate based approach. We apply these methods to the case of a massless scalar wave equation on a Kerr spacetime. Our methods are designed to allow existing codes to reach the radiative zone by including future null infinity in the computational domain with relatively minor modifications. We demonstrate the flexibility of the methods by considering both Boyer-Lindquist and ingoing Kerr coordinates near the black hole. We also confirm numerically predictions concerning tail decay rates for scalar fields at null infinity in Kerr spacetime due to Hod for the first time.

[1]  Radiative tail of realistic rotating gravitational collapse , 1999, Physical review letters.

[2]  R. Penrose Republication of: Conformal treatment of infinity , 2011 .

[3]  Manuel Tiglio,et al.  High accuracy simulations of Kerr tails: coordinate dependence and higher multipoles , 2007, 0712.2472.

[4]  Heinz-Otto Kreiss,et al.  Methods for the approximate solution of time dependent problems , 1973 .

[5]  M. Boyle,et al.  Extrapolating gravitational-wave data from numerical simulations , 2009, 0905.3177.

[6]  Oscar A. Reula,et al.  Boundary Conditions for Coupled Quasilinear Wave Equations with Application to Isolated Systems , 2008, 0807.3207.

[7]  O. Sarbach,et al.  Improved outer boundary conditions for Einstein's field equations , 2007, gr-qc/0703129.

[8]  Anil Zenginoglu,et al.  Gravitational perturbations of Schwarzschild spacetime at null infinity and the hyperboloidal initial value problem , 2008, 0810.1929.

[9]  Anil Zenginoglu,et al.  A hyperboloidal study of tail decay rates for scalar and Yang–Mills fields , 2008 .

[10]  L. Lehner,et al.  Dealing with delicate issues in waveform calculations , 2007, 0706.1319.

[11]  R. Penrose Gravitational collapse and spacetime singularities , 1965 .

[12]  Oliver Elbracht,et al.  Using curvature invariants for wave extraction in numerical relativity , 2008, 0811.1600.

[13]  F. Ohme,et al.  Stationary hyperboloidal slicings with evolved gauge conditions , 2009, 0905.0450.

[14]  Duncan A. Brown,et al.  Model waveform accuracy standards for gravitational wave data analysis , 2008, 0809.3844.

[15]  Michael Boyle,et al.  High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions , 2007, 0710.0158.

[16]  R. Geroch,et al.  Asymptotic Structure of Space-Time , 1977 .

[17]  O. Rinne,et al.  Regularity of the Einstein equations at future null infinity , 2008, 0811.4109.

[18]  Roger Penrose,et al.  Asymptotic properties of fields and space-times , 1963 .

[19]  A. Lun,et al.  The Kerr spacetime in generalized Bondi?Sachs coordinates , 2003 .

[20]  P. Laguna,et al.  Dynamics of perturbations of rotating black holes , 1997 .

[21]  Helmut Friedrich,et al.  Cauchy problems for the conformal vacuum field equations in general relativity , 1983 .

[22]  D. Hobill,et al.  A study of nonlinear radiation damping by matching analytic and numerical solutions , 1988 .

[23]  M. Scheel,et al.  Testing outer boundary treatments for the Einstein equations , 2007, 0704.0782.

[24]  J. Stewart,et al.  Characteristic initial data and wavefront singularities in general relativity , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[25]  Gaurav Khanna,et al.  Late-time Kerr tails revisited , 2007, 0711.0960.

[26]  Quasi-spherical light cones of the Kerr geometry , 1998, gr-qc/9803080.

[27]  R. Wald,et al.  General Relativity , 2020, The Cosmic Microwave Background.

[28]  O. Rinne Stable radiation-controlling boundary conditions for the generalized harmonic Einstein equations , 2006, gr-qc/0606053.

[29]  S. Husa,et al.  Hyperboloidal data and evolution , 2005, gr-qc/0512033.

[30]  E. W. Leaver,et al.  An analytic representation for the quasi-normal modes of Kerr black holes , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[31]  Nigel T. Bishop Numerical relativity: combining the Cauchy and characteristic initial value problems , 1993 .

[32]  J. Frauendiener Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. III. On the determination of radiation , 1998, gr-qc/9808072.

[33]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[34]  E. Malec,et al.  Constant mean curvature slices in the extended Schwarzschild solution and the collapse of the lapse , 2003, gr-qc/0307046.

[35]  Leaver,et al.  Spectral decomposition of the perturbation response of the Schwarzschild geometry. , 1986, Physical review. D, Particles and fields.

[36]  Light cone structure near null infinity of the Kerr metric , 2007, gr-qc/0701171.

[37]  H. Friedrich Initial boundary value problems for Einstein’s field equations and geometric uniqueness , 2009, 0903.5160.

[38]  Over the Rainbow: Numerical Relativity beyond Scri+ , 2005, gr-qc/0512167.

[39]  Construction of Hyperboloidal Initial Data , 2002, gr-qc/0205083.

[40]  L. Rezzolla,et al.  Constraint-preserving boundary treatment for a harmonic formulation of the Einstein equations , 2008, 0802.3341.

[41]  Erik Schnetter,et al.  Numerical study of the quasinormal mode excitation of Kerr black holes , 2006, gr-qc/0608091.

[42]  The Cauchy problem for the Einstein equations , 2000, gr-qc/0002074.

[43]  78 v 1 2 6 N ov 1 99 7 Boosted three-dimensional blackhole evolutions with singularity excision The Binary Black Hole Grand Challenge Alliance : , 1997 .

[44]  Shahar Hod Mode-coupling in rotating gravitational collapse: Gravitational and electromagnetic perturbations , 2000 .

[45]  Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. II. The evolution equations , 1997, gr-qc/9712052.

[46]  Numerical investigation of highly excited magnetic monopoles in SU(2) Yang-Mills-Higgs theory , 2006, hep-th/0609110.

[47]  H. Friedrich,et al.  The Initial Boundary Value Problem for Einstein's Vacuum Field Equation , 1999 .

[48]  Jorge Pullin,et al.  Late-time tails in the Kerr spacetime , 2007, 0710.4183.

[49]  Boundary conditions for Einstein's field equations: Analytical and numerical analysis , 2004, gr-qc/0412115.

[50]  Matzner,et al.  Cauchy-characteristic matching: A new approach to radiation boundary conditions. , 1996, Physical review letters.

[51]  Erik Schnetter,et al.  How far away is far enough for extracting numerical waveforms, and how much do they depend on the extraction method? , 2006, gr-qc/0612149.

[52]  C. Misner,et al.  Excising das All: Evolving Maxwell waves beyond Scri , 2006, gr-qc/0603034.

[53]  THE ASYMPTOTIC STRUCTURE OF SPACE-TIME , 2003, astro-ph/0308236.

[54]  Anil Zenginoglu,et al.  Hyperboloidal foliations and scri-fixing , 2007, Classical and Quantum Gravity.

[55]  J. Winicour,et al.  Gravitational Fields in Finite and Conformal Bondi Frames , 1966 .

[56]  News from critical collapse: Bondi mass, tails, and quasinormal modes , 2004, gr-qc/0411078.

[57]  M. Parashar,et al.  GRAVITATIONAL WAVE EXTRACTION AND OUTER BOUNDARY CONDITIONS BY PERTURBATIVE MATCHING , 1997, gr-qc/9709082.

[58]  L. Lehner,et al.  Estimating total momentum at finite distances , 2008, 0806.4340.

[59]  J. Stewart,et al.  Numerical relativity and asymptotic flatness , 2009, 0902.0481.

[60]  Mode-coupling in rotating gravitational collapse of a scalar field , 1999, gr-qc/9902072.

[61]  R. Isaacson,et al.  Null cone computation of gravitational radiation , 1983 .