Structured first order conservation models for pedestrian dynamics

In this contribution, we revisit multiple first order macroscopic modelling approaches to pedestrian flows and computationally compare the results with a microscopic approach to pedestrian dynamics. We find that widely used conservation schemes show significantly different results than microscopic models. Thus, we propose to adopt on a macroscopic level a structured continuum model. The approach basically relies on fundamental diagrams - the relationship between fluxes and local densities - as well as the explicit consideration of individual velocities, thus showing similarities to generalised kinetic models. The macroscopic model is outlined in detail and shows a significantly better agreement with microscopic pedestrian models. The increased realism, important for safety relevant real life applications, is underlined considering several scenarios.

[1]  Chi-Wang Shu,et al.  Dynamic continuum pedestrian flow model with memory effect. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Hai-Jun Huang,et al.  Static floor field and exit choice for pedestrian evacuation in rooms with internal obstacles and multiple exits. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Sabiha Amin Wadoo,et al.  Pedestrian Dynamics: Feedback Control of Crowd Evacuation , 2008 .

[4]  Horst W. Hamacher,et al.  Bidirectional Coupling of Macroscopic and Microscopic Approaches for Pedestrian Behavior Prediction , 2011 .

[5]  Norman I. Badler,et al.  Virtual Crowds: Methods, Simulation, and Control , 2008, Virtual Crowds: Methods, Simulation, and Control.

[6]  Carlos F. Daganzo,et al.  Fundamentals of Transportation and Traffic Operations , 1997 .

[7]  L. F. Henderson On the fluid mechanics of human crowd motion , 1974 .

[8]  Dirk Hartmann,et al.  Adaptive pedestrian dynamics based on geodesics , 2010 .

[9]  Cécile Appert-Rolland,et al.  Two-way multi-lane traffic model for pedestrians in corridors , 2011, Networks Heterog. Media.

[10]  Chi-Wang Shu,et al.  Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm , 2009 .

[11]  Benedetto Piccoli,et al.  Multiscale Modeling of Granular Flows with Application to Crowd Dynamics , 2010, Multiscale Model. Simul..

[12]  Andreas Schadschneider,et al.  Extended Floor Field CA Model for Evacuation Dynamics , 2004, IEICE Trans. Inf. Syst..

[13]  Mohcine Chraibi,et al.  Generalized centrifugal-force model for pedestrian dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Mark J. Embrechts,et al.  Cellular automata modeling of pedestrian movements , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[15]  Andreas Schadschneider,et al.  Empirical results for pedestrian dynamics and their implications for modeling , 2011, Networks Heterog. Media.

[16]  Dirk Helbing A Fluid-Dynamic Model for the Movement of Pedestrians , 1992, Complex Syst..

[17]  Taras I. Lakoba,et al.  Modifications of the Helbing-Molnár-Farkas-Vicsek Social Force Model for Pedestrian Evolution , 2005, Simul..

[18]  S. Dai,et al.  Centrifugal force model for pedestrian dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Ulrich Weidmann,et al.  Transporttechnik der Fussgänger: Transporttechnische Eigenschaften des Fussgängerverkehrs, Literaturauswertung , 1992 .

[20]  A. Schadschneider,et al.  Simulation of pedestrian dynamics using a two dimensional cellular automaton , 2001 .

[21]  Simone Göttlich,et al.  Evacuation dynamics influenced by spreading hazardous material , 2011, Networks Heterog. Media.

[22]  Wolfram Klein,et al.  Microscopic Pedestrian Simulations: From Passenger Exchange Times to Regional Evacuation , 2010, OR.

[23]  R. LeVeque Numerical methods for conservation laws , 1990 .

[24]  R. Hughes The flow of human crowds , 2003 .

[25]  Nicola Bellomo,et al.  On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms , 2011, Networks Heterog. Media.

[26]  Mohcine Chraibi,et al.  Force-based models of pedestrian dynamics , 2011, Networks Heterog. Media.

[27]  H. Holden,et al.  A mathematical model of traffic flow on a network of unidirectional roads , 1995 .

[28]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[29]  Roger L. Hughes,et al.  A continuum theory for the flow of pedestrians , 2002 .

[30]  Hubert Ludwig Kluepfel,et al.  A Cellular automaton model for crowd movement and egress simulation , 2003 .

[31]  Katsuhiro Nishinari,et al.  Simulation for pedestrian dynamics by real-coded cellular automata (RCA) , 2007 .

[32]  André Borrmann,et al.  Combining pedestrian simulation with a network flow optimization to support security staff in handling an evacuation of a soccer stadium , 2011 .

[33]  Nicola Bellomo,et al.  On the Modeling of Traffic and Crowds: A Survey of Models, Speculations, and Perspectives , 2011, SIAM Rev..

[34]  R. Colombo,et al.  Pedestrian flows and non‐classical shocks , 2005 .

[35]  N. Bellomo,et al.  First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow , 2005 .

[36]  Yoshihiro Ishibashi,et al.  Self-Organized Phase Transitions in Cellular Automaton Models for Pedestrians , 1999 .

[37]  José Rogan,et al.  Cellular automaton model for evacuation process with obstacles , 2007 .

[38]  Nicola Bellomo,et al.  ON THE MATHEMATICAL THEORY OF VEHICULAR TRAFFIC FLOW I: FLUID DYNAMIC AND KINETIC MODELLING , 2002 .

[39]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Daniel R. Parisi,et al.  A modification of the Social Force Model can reproduce experimental data of pedestrian flows in normal conditions , 2009 .

[41]  Mauro Garavello,et al.  Traffic Flow on a Road Network , 2005, SIAM J. Math. Anal..

[42]  M. Herty,et al.  Network models for supply chains , 2005 .

[43]  Rainald Löhner,et al.  On the modeling of pedestrian motion , 2010 .

[44]  Axel Klar,et al.  Modeling, Simulation, and Optimization of Traffic Flow Networks , 2003, SIAM J. Sci. Comput..

[45]  V. Coscia,et al.  FIRST-ORDER MACROSCOPIC MODELLING OF HUMAN CROWD DYNAMICS , 2008 .

[46]  Hubert Klüpfel,et al.  Evacuation Dynamics: Empirical Results, Modeling and Applications , 2009, Encyclopedia of Complexity and Systems Science.

[47]  Dirk Helbing,et al.  Pedestrian, Crowd and Evacuation Dynamics , 2013, Encyclopedia of Complexity and Systems Science.

[48]  C. Canuto,et al.  A Eulerian approach to the analysis of rendez-vous algorithms , 2008 .

[49]  B. Kerner THE PHYSICS OF TRAFFIC , 1999 .