CXCL5 suppression recovers neovascularization and accelerates wound healing in diabetes mellitus

[1]  Jaw-Wen Chen,et al.  CCL4 Deletion Accelerates Wound Healing by Improving Endothelial Cell Functions in Diabetes Mellitus , 2022, Biomedicines.

[2]  T. Battelino,et al.  Pathogenesis of Type 1 Diabetes: Established Facts and New Insights , 2022, Genes.

[3]  César Martín,et al.  Pathophysiology of Type 2 Diabetes Mellitus , 2020, International journal of molecular sciences.

[4]  P. Proost,et al.  Neutrophil chemoattractant receptors in health and disease: double-edged swords , 2020, Cellular & Molecular Immunology.

[5]  Yu-Ming Li,et al.  ENA-78 Is a Novel Predictor of Wound Healing in Patients with Diabetic Foot Ulcers , 2019, Journal of diabetes research.

[6]  Liang-Yu Lin,et al.  Inhibition of macrophage inflammatory protein-1β improves endothelial progenitor cell function and ischemia-induced angiogenesis in diabetes , 2018, Angiogenesis.

[7]  G. Chrousos,et al.  On type 1 diabetes mellitus pathogenesis , 2017, Endocrine connections.

[8]  H. Nagai,et al.  Exacerbation and Prolongation of Psoriasiform Inflammation in Diabetic Obese Mice: A Synergistic Role of CXCL5 and Endoplasmic Reticulum Stress. , 2017, The Journal of investigative dermatology.

[9]  M. Ochi,et al.  The Use of Endothelial Progenitor Cells for the Regeneration of Musculoskeletal and Neural Tissues , 2017, Stem cells international.

[10]  Shaoling Yang,et al.  Pathophysiology of peripheral arterial disease in diabetes mellitus , 2017, Journal of diabetes.

[11]  G. Ramage,et al.  The Influence of Glycated Hemoglobin on the Cross Susceptibility Between Type 1 Diabetes Mellitus and Periodontal Disease. , 2015, Journal of periodontology.

[12]  O. Tabatabaei-Malazy,et al.  Association between Genetic Variants and Diabetes Mellitus in Iranian Populations: A Systematic Review of Observational Studies , 2015, Journal of diabetes research.

[13]  E. Armstrong,et al.  Peripheral artery disease in patients with diabetes: Epidemiology, mechanisms, and outcomes. , 2015, World journal of diabetes.

[14]  S. Kinlay,et al.  Endovascular intervention for peripheral artery disease. , 2015, Circulation research.

[15]  E. Rojewska,et al.  The Role of Some Chemokines from the CXC Subfamily in a Mouse Model of Diabetic Neuropathy , 2015, Journal of diabetes research.

[16]  C. Nunemaker,et al.  Increased serum CXCL1 and CXCL5 are linked to obesity, hyperglycemia, and impaired islet function. , 2014, The Journal of endocrinology.

[17]  G. King,et al.  Vascular complications of diabetes: mechanisms of injury and protective factors. , 2013, Cell metabolism.

[18]  E. Elster,et al.  Comparative analysis of angiogenic gene expression in normal and impaired wound healing in diabetic mice: effects of extracorporeal shock wave therapy , 2010, Angiogenesis.

[19]  Hsiao-Ya Tsai,et al.  Matrix Metalloproteinase-9 Is Essential for Ischemia-Induced Neovascularization by Modulating Bone Marrow–Derived Endothelial Progenitor Cells , 2009, Arteriosclerosis, thrombosis, and vascular biology.

[20]  L. Fajas,et al.  CXCL5 drives obesity to diabetes, and further , 2009, Aging.

[21]  M. Muraguchi,et al.  Increased urinary levels of CXCL5, CXCL8 and CXCL9 in patients with Type 2 diabetic nephropathy. , 2009, Journal of diabetes and its complications.

[22]  E. Renard,et al.  CXC ligand 5 is an adipose-tissue derived factor that links obesity to insulin resistance. , 2009, Cell metabolism.

[23]  A. Alfadda,et al.  Circulatory neutrophil chemokines in statin-treated diabetic patients. , 2008, Saudi medical journal.

[24]  S. Rafii,et al.  The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. , 2007, Trends in immunology.

[25]  G. Gurtner,et al.  Human Endothelial Progenitor Cells From Type II Diabetics Exhibit Impaired Proliferation, Adhesion, and Incorporation Into Vascular Structures , 2002, Circulation.

[26]  Alan W. Stitt,et al.  Advanced glycation end products and diabetic complications , 2002, Expert opinion on investigational drugs.

[27]  A. Walz,et al.  Regulation and function of the CXC chemokine ENA‐78 in monocytes and its role in disease , 1997, Journal of leukocyte biology.

[28]  R. Strieter,et al.  Structure and neutrophil-activating properties of a novel inflammatory peptide (ENA-78) with homology to interleukin 8 , 1991, The Journal of experimental medicine.

[29]  I. Zineh,et al.  CXCL5 Gene Polymorphism Association with Diabetes Mellitus , 2012, Molecular Diagnosis & Therapy.

[30]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..