Convexity-Preserving Rigid Motions of 2D Digital Objects

Rigid motions on R 2 are isometric and thus preserve the geometry and topology of objects. However, this important property is generally lost when considering digital objects defined on Z 2 , due to the digitization process from R 2 to Z 2. In this article, we focus on the convex-ity property of digital objects, and propose an approach for rigid motions of digital objects which preserves this convexity. The method is extended to non-convex objects, based on the concavity tree representation.

[1]  Jean Pierre Duval,et al.  Factorizing Words over an Ordered Alphabet , 1983, J. Algorithms.

[2]  T. Pavlidis Algorithms for Graphics and Image Processing , 1981, Springer Berlin Heidelberg.

[3]  Francisco José Madrid-Cuevas,et al.  The computation of polygonal approximations for 2D contours based on a concavity tree , 2014, J. Vis. Commun. Image Represent..

[4]  Azriel Rosenfeld,et al.  Digital geometry - geometric methods for digital picture analysis , 2004 .

[5]  Hugues Talbot,et al.  Topology-Preserving Rigid Transformation of 2D Digital Images , 2014, IEEE Transactions on Image Processing.

[6]  Laure Tougne,et al.  Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature , 1999, DGCI.

[7]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[8]  Atsushi Imiya,et al.  Digital and Image Geometry , 2002, Lecture Notes in Computer Science.

[9]  Jack Sklansky,et al.  Measuring Concavity on a Rectangular Mosaic , 1972, IEEE Transactions on Computers.

[10]  Jacques-Olivier Lachaud,et al.  Lyndon + Christoffel = digitally convex , 2009, Pattern Recognit..

[11]  W. S. Anglin Using Pythagorean triangles to approximate angles , 1988 .

[12]  H. Dorksen-Reiter,et al.  Convex and Concave Parts of digital Curves , 2006 .

[13]  Gabriella Sanniti di Baja,et al.  Analyzing Nonconvex 2D and 3D Patterns , 1996, Comput. Vis. Image Underst..

[14]  Avraham A. Melkman,et al.  On-Line Construction of the Convex Hull of a Simple Polyline , 1987, Inf. Process. Lett..

[15]  Gisela Klette Recursive computation of minimum-length polygons , 2013, Comput. Vis. Image Underst..

[16]  Isabelle Sivignon,et al.  Faithful polygonal representation of the convex and concave parts of a digital curve , 2011, Pattern Recognit..

[17]  Chul E. Kim On the Cellular Convexity of Complexes , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Azriel Rosenfeld,et al.  Digital Straight Lines and Convexity of Digital Regions , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Isabelle Debled-Rennesson,et al.  A Linear Algorithm for Segmentation of Digital Curves , 1995, Int. J. Pattern Recognit. Artif. Intell..

[20]  Jack Sklansky,et al.  Recognition of convex blobs , 1970, Pattern Recognit..

[21]  Liana Lupşa,et al.  Non-Connected Convexities and Applications , 2002 .

[22]  Christopher Conrad,et al.  Preserving Topology by a Digitization Process , 1998, Journal of Mathematical Imaging and Vision.

[23]  Ulrich Eckhardt,et al.  Digital Lines and Digital Convexity , 2000, Digital and Image Geometry.

[24]  Isabelle Debled-Rennesson,et al.  Detection of the discrete convexity of polyominoes , 2003, Discret. Appl. Math..