Ab initio computations close to the one‐particle basis set limit on the weakly bound van der Waals complexes benzene–neon and benzene–argon
暂无分享,去创建一个
Hans Peter Lüthi | Wim Klopper | Alfred Bauder | H. Lüthi | W. Klopper | A. Bauder | Th. Brupbacher | Th. Brupbacher
[1] Wim Klopper,et al. Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory , 1991 .
[2] P. Hobza,et al. New Structure for the Most Stable Isomer of the Benzene Dimer: A Quantum Chemical Study , 1993 .
[3] Wim Klopper,et al. Computation of some new two-electron Gaussian integrals , 1992 .
[4] T. Dunning,et al. Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .
[5] P. Hobza,et al. Ground state potential surface for van der Waals complexes: Abinitio second‐order Mo/ller–Plesset study on benzene...N2 van der Waals molecule , 1993 .
[6] H. Lüthi,et al. An ab initio investigation of the potential energy surface of the benzene—neon van der Waals complex , 1992 .
[7] G. Scuseria,et al. Connected triple excitations in coupled-cluster calculations of hyperpolarizabilities: neon , 1992 .
[8] W. Kutzelnigg,et al. Møller-plesset calculations taking care of the correlation CUSP , 1987 .
[9] Ashok Kumar,et al. Integrated dipole oscillator strengths and dipole properties for Ne, Ar, Kr, Xe, HF, HCl, and HBr , 1985 .
[10] A. Bauder,et al. Rotational spectrum and dipole moment of the benzene—argon van der Waals complex , 1990 .
[11] Wim Klopper,et al. Orbital-invariant formulation of the MP2-R12 method , 1991 .
[12] Wim Klopper,et al. CC-R12, a correlation cusp corrected coupled-cluster method with a pilot application to the Be2 potential curve , 1992 .
[13] Robert J. Gdanitz,et al. A formulation of multiple-reference CI with terms linear in the interelectronic distances , 1993 .
[14] H. S. Gutowsky,et al. Rotational spectra, structure, Kr‐83 nuclear quadrupole coupling constant, and the dipole moment of the Kr‐benzene dimer , 1992 .
[15] P. Hobza,et al. Ab initio Calculations on the Structure, Stabilization, and Dipole-Moment of Benzene ... Ar Complex , 1991 .
[16] P. Hobza,et al. Properties of fluorobenzene⋅⋅⋅Ar and p-difluorobenzene⋅⋅⋅Ar complexes: Ab initio study , 1993 .
[17] H. Krause,et al. Dissociation energy of neutral and ionic benzene‐noble gas dimers by pulsed field threshold ionization spectroscopy , 1993 .
[18] W. Kutzelnigg,et al. Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. III. Second‐order Mo/ller–Plesset (MP2‐R12) calculations on molecules of first row atoms , 1991 .
[19] M. Malagoli,et al. Coupled Hartree-Fock calculations of magnetic properties of the benzene molecule: estimate of the hartree-fock limit for magnetic susceptibilities and , 1991 .
[20] J. Almlöf,et al. Exploiting non-abelian point group symmetry in direct two-electron integral transformations , 1991 .
[21] S. F. Boys,et al. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .
[22] D. Woon. Accurate modeling of intermolecular forces: a systematic Møller-Plesset study of the argon dimer using correlation consistent basis sets , 1993 .
[23] T. H. Dunning. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .
[24] J. Almlöf,et al. Towards the one‐particle basis set limit of second‐order correlation energies: MP2‐R12 calculations on small Ben and Mgn clusters (n=1–4) , 1993 .
[25] Alfred Bauder,et al. Intermolecular dynamics of benzene–rare gas complexes as derived from microwave spectra , 1994 .
[26] Hans W. Horn,et al. ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .
[27] J. R. Flores. High precision atomic computations from finite element techniques: Second‐order correlation energies of rare gas atoms , 1993 .
[28] Pavel Hobza,et al. Abinitio second‐ and fourth‐order Mo/ller–Plesset study on structure, stabilization energy, and stretching vibration of benzene⋅⋅⋅X (X=He,Ne,Ar,Kr,Xe) van der Waals molecules , 1992 .
[29] M. Malagoli,et al. Coupled Hartree-Fock calculations of atomic polar tensors and the dipole polarisability of the benzene molecule , 1990 .