Stance detection and summarization in social networks

During recent years, there have been a lot of research in the area of Natural Language Processing (NLP) related to the sentiment analysis. Stance detection goes even further and tries to detect whether the author of the text is in favor or against a given target. The main difference to sentiment analysis is that in stance detection, systems are to determine the author’s favorability towards a given target and the target may not even be explicitly mentioned in the text. Moreover, the text may express positive opinion about an entity contained in the text, but one can also infer that the author is against the defined target (an entity or a topic). This thesis is focused on the two main tasks: identifying the stance and its summarization and outlines the state-of-the-art approaches to stance detection and summarization. Copies of this report are available on http://www.kiv.zcu.cz/publications/ or by surface mail on request sent to the following address: University of West Bohemia in Pilsen Department of Computer Science and Engineering Univerzitni 8 30614 Pilsen Czech Republic Copyright c ©2018 University of West Bohemia in Pilsen, Czech Republic

[1]  Hans Peter Luhn,et al.  The Automatic Creation of Literature Abstracts , 1958, IBM J. Res. Dev..

[2]  Gustave J. Rath,et al.  The formation of abstracts by the selection of sentences , 1961 .

[3]  H. P. Edmundson,et al.  New Methods in Automatic Extracting , 1969, JACM.

[4]  Yann LeCun,et al.  Generalization and network design strategies , 1989 .

[5]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[6]  George A. Miller,et al.  Introduction to WordNet: An On-line Lexical Database , 1990 .

[7]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[8]  Paul J. Krause,et al.  Argumentation as a General Framework for Uncertain Reasoning , 1993, UAI.

[9]  Francine Chen,et al.  A trainable document summarizer , 1995, SIGIR '95.

[10]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[11]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[12]  Eduard Hovy,et al.  Automated Text Summarization in SUMMARIST , 1997, ACL 1997.

[13]  Peter W. Foltz,et al.  An introduction to latent semantic analysis , 1998 .

[14]  Yoshua Bengio,et al.  Gradient Flow in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies , 2001 .

[15]  Simon Haykin,et al.  GradientBased Learning Applied to Document Recognition , 2001 .

[16]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[17]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[18]  F. Grasso Towards a Framework for Rhetorical Argumentation , 2002 .

[19]  Miles Osborne,et al.  Using maximum entropy for sentence extraction , 2002, ACL 2002.

[20]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[21]  J. Schmidhuber,et al.  A First Look at Music Composition using LSTM Recurrent Neural Networks , 2002 .

[22]  Dragomir R. Radev,et al.  Introduction to the Special Issue on Summarization , 2002, CL.

[23]  Liang Zhou,et al.  A Web-Trained Extraction Summarization System , 2003, NAACL.

[24]  Hong Yu,et al.  Towards Answering Opinion Questions: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences , 2003, EMNLP.

[25]  Michael L. Littman,et al.  Measuring praise and criticism: Inference of semantic orientation from association , 2003, TOIS.

[26]  Brahim Chaib-draa,et al.  Commitment and Argument Network: A New Formalism for Agent Communication , 2003, Workshop on Agent Communication Languages.

[27]  Eduard H. Hovy,et al.  Automatic Evaluation of Summaries Using N-gram Co-occurrence Statistics , 2003, NAACL.

[28]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[29]  J. Steinberger,et al.  Using Latent Semantic Analysis in Text Summarization and Summary Evaluation , 2004 .

[30]  Ani Nenkova,et al.  Evaluating Content Selection in Summarization: The Pyramid Method , 2004, NAACL.

[31]  Vasileios Hatzivassiloglou,et al.  A Formal Model for Information Selection in Multi-Sentence Text Extraction , 2004, COLING.

[32]  Soo-Min Kim,et al.  Determining the Sentiment of Opinions , 2004, COLING.

[33]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[34]  Brahim Chaib-draa,et al.  A Computational Model for Conversation Policies for Agent Communication , 2004, CLIMA.

[35]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Claire Cardie,et al.  Annotating Expressions of Opinions and Emotions in Language , 2005, Lang. Resour. Evaluation.

[37]  Bing Liu,et al.  Opinion observer: analyzing and comparing opinions on the Web , 2005, WWW '05.

[38]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[39]  Trevor J. M. Bench-Capon,et al.  Computational Representation of Practical Argument , 2006, Synthese.

[40]  Sanda M. Harabagiu,et al.  Topic themes for multi-document summarization , 2005, SIGIR '05.

[41]  Jure Leskovec,et al.  Impact of Linguistic Analysis on the Semantic Graph Coverage and Learning of Document Extracts , 2005, AAAI.

[42]  Matt Thomas,et al.  Get out the vote: Determining support or opposition from Congressional floor-debate transcripts , 2006, EMNLP.

[43]  Frank Dignum,et al.  Argumentation and Persuasion in the Cognitive Coherence Theory , 2006, COMMA.

[44]  Dianne P. O'Leary,et al.  Topic-Focused Multi-Document Summarization Using an Approximate Oracle Score , 2006, ACL.

[45]  Swapna Somasundaran,et al.  Detecting Arguing and Sentiment in Meetings , 2007, SIGdial.

[46]  Anthony Hunter,et al.  Elements of Argumentation , 2007, ECSQARU.

[47]  Karel Jezek,et al.  Two uses of anaphora resolution in summarization , 2007, Inf. Process. Manag..

[48]  Horacio Rodríguez,et al.  Support Vector Machines for Query-focused Summarization trained and evaluated on Pyramid data , 2007, ACL.

[49]  Xu Ling,et al.  Topic sentiment mixture: modeling facets and opinions in weblogs , 2007, WWW '07.

[50]  Ryan T. McDonald A Study of Global Inference Algorithms in Multi-document Summarization , 2007, ECIR.

[51]  Henry Prakken,et al.  The Carneades model of argument and burden of proof , 2007, Artif. Intell..

[52]  Joshua Goodman,et al.  Multi-Document Summarization by Maximizing Informative Content-Words , 2007, IJCAI.

[53]  Geoffrey E. Hinton,et al.  The Recurrent Temporal Restricted Boltzmann Machine , 2008, NIPS.

[54]  Philip S. Yu,et al.  A holistic lexicon-based approach to opinion mining , 2008, WSDM '08.

[55]  Hinrich Schütze,et al.  Introduction to Information Retrieval: Scoring, term weighting, and the vector space model , 2008 .

[56]  Kam-Fai Wong,et al.  Extractive Summarization Using Supervised and Semi-Supervised Learning , 2008, COLING.

[57]  Dilek Z. Hakkani-Tür,et al.  Packing the meeting summarization knapsack , 2008, INTERSPEECH.

[58]  Ivan Titov,et al.  Modeling online reviews with multi-grain topic models , 2008, WWW.

[59]  Sasha Blair-Goldensohn,et al.  Building a Sentiment Summarizer for Local Service Reviews , 2008 .

[60]  Delip Rao,et al.  Semi-Supervised Polarity Lexicon Induction , 2009, EACL.

[61]  Yulan He,et al.  Joint sentiment/topic model for sentiment analysis , 2009, CIKM.

[62]  Swapna Somasundaran,et al.  Recognizing Stances in Online Debates , 2009, ACL.

[63]  Carolyn Penstein Rosé,et al.  Generalizing Dependency Features for Opinion Mining , 2009, ACL.

[64]  Dilek Z. Hakkani-Tür,et al.  A global optimization framework for meeting summarization , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[65]  István Bíró,et al.  Document Classification With Latent Dirichlet Allocation , 2009 .

[66]  Bernard Moulin,et al.  A taxonomy of argumentation models used for knowledge representation , 2010, Artificial Intelligence Review.

[67]  Chong Long,et al.  A Review Selection Approach for Accurate Feature Rating Estimation , 2010, COLING.

[68]  Peter D. Turney,et al.  Emotions Evoked by Common Words and Phrases: Using Mechanical Turk to Create an Emotion Lexicon , 2010, HLT-NAACL 2010.

[69]  Swapna Somasundaran,et al.  Recognizing Stances in Ideological On-Line Debates , 2010, HLT-NAACL 2010.

[70]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[71]  Martin Ester,et al.  Opinion digger: an unsupervised opinion miner from unstructured product reviews , 2010, CIKM.

[72]  Noémie Elhadad,et al.  An Unsupervised Aspect-Sentiment Model for Online Reviews , 2010, NAACL.

[73]  Yoshua Bengio,et al.  Word Representations: A Simple and General Method for Semi-Supervised Learning , 2010, ACL.

[74]  Josef Steinberger,et al.  Creating Sentiment Dictionaries via Triangulation , 2011, Decis. Support Syst..

[75]  Marilyn A. Walker,et al.  Cats Rule and Dogs Drool!: Classifying Stance in Online Debate , 2011, WASSA@ACL.

[76]  Alice H. Oh,et al.  Aspect and sentiment unification model for online review analysis , 2011, WSDM '11.

[77]  Geoffrey E. Hinton,et al.  Generating Text with Recurrent Neural Networks , 2011, ICML.

[78]  Yoshua Bengio,et al.  Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription , 2012, ICML.

[79]  Bing Liu,et al.  Sentiment Analysis and Opinion Mining , 2012, Synthesis Lectures on Human Language Technologies.

[80]  Brian Davis,et al.  Knowledge Engineering and Knowledge Management , 2012, Lecture Notes in Computer Science.

[81]  Marilyn A. Walker,et al.  Stance Classification using Dialogic Properties of Persuasion , 2012, NAACL.

[82]  Marilyn A. Walker,et al.  A Corpus for Research on Deliberation and Debate , 2012, LREC.

[83]  Yue Lu,et al.  Unsupervised discovery of opposing opinion networks from forum discussions , 2012, CIKM '12.

[84]  Jirí Materna,et al.  LDA-Frames: An Unsupervised Approach to Generating Semantic Frames , 2012, CICLing.

[85]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[86]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[87]  J. Steinberger Multilingual Summarisation and Sentiment Analysis Habilitation Thesis , 2013 .

[88]  George Giannakopoulos,et al.  Multi-document multilingual summarization and evaluation tracks in ACL 2013 MultiLing Workshop , 2013 .

[89]  Xianghua Fu,et al.  Multi-aspect sentiment analysis for Chinese online social reviews based on topic modeling and HowNet lexicon , 2013, Knowl. Based Syst..

[90]  Philipp Koehn,et al.  Abstract Meaning Representation for Sembanking , 2013, LAW@ACL.

[91]  Yoshua Bengio,et al.  On the Properties of Neural Machine Translation: Encoder–Decoder Approaches , 2014, SSST@EMNLP.

[92]  Vincent Ng,et al.  Why are You Taking this Stance? Identifying and Classifying Reasons in Ideological Debates , 2014, EMNLP.

[93]  Saif Mohammad,et al.  NRC-Canada-2014: Detecting Aspects and Sentiment in Customer Reviews , 2014, *SEMEVAL.

[94]  Din J. Wasem,et al.  Mining of Massive Datasets , 2014 .

[95]  Marilyn A. Walker,et al.  Collective Stance Classification of Posts in Online Debate Forums , 2014 .

[96]  Saif Mohammad,et al.  Sentiment Analysis of Short Informal Texts , 2014, J. Artif. Intell. Res..

[97]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[98]  Udo Kruschwitz,et al.  OnForumS: The Shared Task on Online Forum Summarisation at MultiLing'15 , 2015, FIRE.

[99]  Загоровская Ольга Владимировна,et al.  Исследование влияния пола и психологических характеристик автора на количественные параметры его текста с использованием программы Linguistic Inquiry and Word Count , 2015 .

[100]  Paolo Torroni,et al.  Argumentation Mining , 2016, ACM Trans. Internet Techn..

[101]  Martin Tutek,et al.  TakeLab at SemEval-2016 Task 6: Stance Classification in Tweets Using a Genetic Algorithm Based Ensemble , 2016, *SEMEVAL.

[102]  Haris Papageorgiou,et al.  SemEval-2016 Task 5: Aspect Based Sentiment Analysis , 2016, *SEMEVAL.

[103]  Michal Konkol,et al.  UWB at SemEval-2016 Task 5: Aspect Based Sentiment Analysis , 2016, *SEMEVAL.

[104]  Josef Steinberger,et al.  UWB at SemEval-2016 Task 6: Stance Detection , 2016, *SEMEVAL.

[105]  Guido Zarrella,et al.  MITRE at SemEval-2016 Task 6: Transfer Learning for Stance Detection , 2016, *SEMEVAL.

[106]  Xiao Zhang,et al.  pkudblab at SemEval-2016 Task 6 : A Specific Convolutional Neural Network System for Effective Stance Detection , 2016, *SEMEVAL.

[107]  Andreas Vlachos,et al.  Emergent: a novel data-set for stance classification , 2016, NAACL.

[108]  Nazli Goharian,et al.  Revisiting Summarization Evaluation for Scientific Articles , 2016, LREC.

[109]  Saif Mohammad,et al.  SemEval-2016 Task 6: Detecting Stance in Tweets , 2016, *SEMEVAL.

[110]  Vahid Mirjalili,et al.  Python machine learning : machine learning and deep learning with Python, scikit-learn, and TensorFlow , 2017 .

[111]  Parinaz Sobhani Stance Detection and Analysis in Social Media , 2017 .

[112]  Josef Steinberger,et al.  Pyramid-based Summary Evaluation Using Abstract Meaning Representation , 2017, RANLP.

[113]  Josef Steinberger,et al.  Stance detection in online discussions , 2017, ArXiv.

[114]  Jade Goldstein-Stewart,et al.  The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries , 1998, SIGIR Forum.

[115]  Tomas Mikolov,et al.  Enriching Word Vectors with Subword Information , 2016, TACL.