Application of the averaging method to the gyrokinetic plasma
暂无分享,去创建一个
[1] Ronald E. Mickens,et al. Oscillations in Planar Dynamic Systems , 1996, Series on Advances in Mathematics for Applied Sciences.
[2] N. Bogolyubov,et al. Asymptotic Methods in the Theory of Nonlinear Oscillations , 1961 .
[3] F. Verhulst. Nonlinear Differential Equations and Dynamical Systems , 1989 .
[4] François Golse,et al. THE VLASOV-POISSON SYSTEM WITH STRONG MAGNETIC FIELD , 1999 .
[5] E. Grenier. Oscillatory perturbations of the Navier Stokes equations , 1997 .
[6] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[7] Charles Gide,et al. The College de France , 1926 .
[8] Emmanuel Frénod. Homogénéisation d'équations cinétiques avec potentiels oscillants , 1994 .
[9] G. Allaire. Homogenization and two-scale convergence , 1992 .
[10] J. Krommes,et al. Nonlinear gyrokinetic equations , 1983 .
[11] J. Joly,et al. Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves , 1993 .
[12] Emmanuel Frénod,et al. The Finite Larmor Radius Approximation , 2001, SIAM J. Math. Anal..
[13] L. Saint-Raymond. THE GYROKINETIC APPROXIMATION FOR THE VLASOV–POISSON SYSTEM , 2000 .
[14] F. Golse,et al. L'approximation centre-guide pour l'équation de Vlasov-Poisson 2D , 1998 .
[15] Henri Poincaré,et al. méthodes nouvelles de la mécanique céleste , 1892 .
[16] D. Stern,et al. Hamiltonian formulation of guiding center motion , 1971 .
[17] E. Grenier. Pseudo-differential energy estimates of singular perturbations , 1997 .
[18] Emmanuel Frenod,et al. The Vlasov equation with strong magnetic field and oscillating electric field as a model of isotope resonant separation , 2002 .
[19] D. Serre. Oscillations non linéaires des systèmes hyperboliques: méthodes et résultats qualitatifs , 1991 .
[20] G. Nguetseng. A general convergence result for a functional related to the theory of homogenization , 1989 .
[21] A. B. Vasilieva. On the Development of Singular Perturbation Theory at Moscow State University and Elsewhere , 1994, SIAM Rev..
[22] Bruce I. Cohen,et al. Orbit Averaging and Subcycling in Particle Simulation of Plasmas , 1985 .
[23] F. Verhulst,et al. Averaging Methods in Nonlinear Dynamical Systems , 1985 .
[24] W. W. Lee,et al. Gyrokinetic approach in particle simulation , 1981 .
[25] Y. Brenier,et al. convergence of the vlasov-poisson system to the incompressible euler equations , 2000 .
[26] Eric Sonnendrücker,et al. LONG TIME BEHAVIOR OF THE TWO-DIMENSIONAL VLASOV EQUATION WITH A STRONG EXTERNAL MAGNETIC FIELD , 2000 .
[27] J. Joly,et al. Global Solutions to Maxwell Equations in a Ferromagnetic Medium , 2000 .
[28] P. Jabin,et al. Large time concentrations for solutions to kinetic equations with energy dissipation , 2000 .
[29] C. Meunier,et al. Multiphase Averaging for Classical Systems: With Applications To Adiabatic Theorems , 1988 .
[30] J. Joly,et al. Nonlinear oscillations beyond caustics , 1996 .
[31] C. Meunier,et al. Multiphase Averaging for Classical Systems , 1988 .