Application of the averaging method to the gyrokinetic plasma

we show that the solution to an oscillatory-singularly perturbed ordinary differential equation may be asymptotically expanded into a sum of oscillating terms. Each of those terms writes as an oscillating operator acting on the solution to a non oscillating ordinary differential equation with an oscillating correction added to it. The expression of the non oscillating ordinary differential equations are defined by a recurrence relation. We then apply this result to problems where charged particles are submitted to large magnetic field.

[1]  Ronald E. Mickens,et al.  Oscillations in Planar Dynamic Systems , 1996, Series on Advances in Mathematics for Applied Sciences.

[2]  N. Bogolyubov,et al.  Asymptotic Methods in the Theory of Nonlinear Oscillations , 1961 .

[3]  F. Verhulst Nonlinear Differential Equations and Dynamical Systems , 1989 .

[4]  François Golse,et al.  THE VLASOV-POISSON SYSTEM WITH STRONG MAGNETIC FIELD , 1999 .

[5]  E. Grenier Oscillatory perturbations of the Navier Stokes equations , 1997 .

[6]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[7]  Charles Gide,et al.  The College de France , 1926 .

[8]  Emmanuel Frénod Homogénéisation d'équations cinétiques avec potentiels oscillants , 1994 .

[9]  G. Allaire Homogenization and two-scale convergence , 1992 .

[10]  J. Krommes,et al.  Nonlinear gyrokinetic equations , 1983 .

[11]  J. Joly,et al.  Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves , 1993 .

[12]  Emmanuel Frénod,et al.  The Finite Larmor Radius Approximation , 2001, SIAM J. Math. Anal..

[13]  L. Saint-Raymond THE GYROKINETIC APPROXIMATION FOR THE VLASOV–POISSON SYSTEM , 2000 .

[14]  F. Golse,et al.  L'approximation centre-guide pour l'équation de Vlasov-Poisson 2D , 1998 .

[15]  Henri Poincaré,et al.  méthodes nouvelles de la mécanique céleste , 1892 .

[16]  D. Stern,et al.  Hamiltonian formulation of guiding center motion , 1971 .

[17]  E. Grenier Pseudo-differential energy estimates of singular perturbations , 1997 .

[18]  Emmanuel Frenod,et al.  The Vlasov equation with strong magnetic field and oscillating electric field as a model of isotope resonant separation , 2002 .

[19]  D. Serre Oscillations non linéaires des systèmes hyperboliques: méthodes et résultats qualitatifs , 1991 .

[20]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[21]  A. B. Vasilieva On the Development of Singular Perturbation Theory at Moscow State University and Elsewhere , 1994, SIAM Rev..

[22]  Bruce I. Cohen,et al.  Orbit Averaging and Subcycling in Particle Simulation of Plasmas , 1985 .

[23]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[24]  W. W. Lee,et al.  Gyrokinetic approach in particle simulation , 1981 .

[25]  Y. Brenier,et al.  convergence of the vlasov-poisson system to the incompressible euler equations , 2000 .

[26]  Eric Sonnendrücker,et al.  LONG TIME BEHAVIOR OF THE TWO-DIMENSIONAL VLASOV EQUATION WITH A STRONG EXTERNAL MAGNETIC FIELD , 2000 .

[27]  J. Joly,et al.  Global Solutions to Maxwell Equations in a Ferromagnetic Medium , 2000 .

[28]  P. Jabin,et al.  Large time concentrations for solutions to kinetic equations with energy dissipation , 2000 .

[29]  C. Meunier,et al.  Multiphase Averaging for Classical Systems: With Applications To Adiabatic Theorems , 1988 .

[30]  J. Joly,et al.  Nonlinear oscillations beyond caustics , 1996 .

[31]  C. Meunier,et al.  Multiphase Averaging for Classical Systems , 1988 .