Area-covering postprocessing of ensemble precipitation forecasts using topographical and seasonal conditions

[1]  B. Saghafian,et al.  Probabilistic streamflow forecast based on spatial post-processing of TIGGE precipitation forecasts , 2019, Stochastic Environmental Research and Risk Assessment.

[2]  A. Favre,et al.  Regional modeling of daily precipitation fields across the Great Lakes region (Canada) using the CFSR reanalysis , 2019, Stochastic Environmental Research and Risk Assessment.

[3]  Yonggwan Shin,et al.  Integration of max-stable processes and Bayesian model averaging to predict extreme climatic events in multi-model ensembles , 2018, Stochastic Environmental Research and Risk Assessment.

[4]  D. Wilks Univariate Ensemble Postprocessing , 2018 .

[5]  Thordis L. Thorarinsdottir,et al.  Verification: Assessment of Calibration and Accuracy , 2018 .

[6]  Stéphane Vannitsem,et al.  Uncertain Forecasts From Deterministic Dynamics , 2018 .

[7]  P. Friederichs,et al.  Postprocessing for Extreme Events , 2018 .

[8]  Jakob W. Messner Ensemble Postprocessing With R , 2018 .

[9]  Roberto Buizza,et al.  Ensemble Forecasting and the Need for Calibration , 2018 .

[10]  Achim Zeileis,et al.  Spatial ensemble post‐processing with standardized anomalies , 2016 .

[11]  S'andor Baran,et al.  Censored and shifted gamma distribution based EMOS model for probabilistic quantitative precipitation forecasting , 2015, 1512.04068.

[12]  Achim Zeileis,et al.  Heteroscedastic Censored and Truncated Regression with crch , 2016, R J..

[13]  Thomas M. Hamill,et al.  Statistical Postprocessing of Ensemble Precipitation Forecasts by Fitting Censored, Shifted Gamma Distributions* , 2015 .

[14]  S. Baran,et al.  Similarity-based semi-local estimation of EMOS models , 2015 .

[15]  F. Pappenberger,et al.  Trends in the predictive performance of raw ensemble weather forecasts , 2014 .

[16]  G. König,et al.  Gridded, locally calibrated, probabilistic temperature forecasts based on ensemble model output statistics , 2014 .

[17]  Achim Zeileis,et al.  Extending Extended Logistic Regression: Extended versus Separate versus Ordered versus Censored , 2014 .

[18]  M. Scheuerer,et al.  Spatially adaptive post‐processing of ensemble forecasts for temperature , 2013, 1302.0883.

[19]  S. Baran,et al.  Comparison of BMA and EMOS statistical calibration methods for temperature and wind speed ensemble weather prediction , 2013, 1312.3763.

[20]  Trevor Hastie,et al.  Learning interactions through hierarchical group-lasso regularization , 2013, 1308.2719.

[21]  M. Scheuerer Probabilistic quantitative precipitation forecasting using Ensemble Model Output Statistics , 2013, 1302.0893.

[22]  Tilmann Gneiting,et al.  Geostatistical Model Averaging for Locally Calibrated Probabilistic Quantitative Precipitation Forecasting , 2011 .

[23]  Adrian E. Raftery,et al.  Locally Calibrated Probabilistic Temperature Forecasting Using Geostatistical Model Averaging and Local Bayesian Model Averaging , 2011 .

[24]  T. Gneiting,et al.  Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules , 2011 .

[25]  D. Ruppert Multivariate Statistical Models , 2011 .

[26]  D. S. Wilks,et al.  Chapter 8 - Forecast Verification , 2011 .

[27]  M. Schmeits,et al.  A Comparison between Raw Ensemble Output, (Modified) Bayesian Model Averaging, and Extended Logistic Regression Using ECMWF Ensemble Precipitation Reforecasts , 2010 .

[28]  Tilmann Gneiting,et al.  Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression , 2010 .

[29]  Daniel S. Wilks,et al.  Extending logistic regression to provide full‐probability‐distribution MOS forecasts , 2009 .

[30]  Renate Hagedorn,et al.  Probabilistic Forecast Calibration Using ECMWF and GFS Ensemble Reforecasts. Part II: Precipitation , 2008 .

[31]  S. Maitra,et al.  Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression , 2008 .

[32]  J. M. Sloughter,et al.  Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging , 2007 .

[33]  Tilmann Gneiting,et al.  ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging , 2007 .

[34]  A. Raftery,et al.  Probabilistic forecasts, calibration and sharpness , 2007 .

[35]  T. Gneiting,et al.  The continuous ranked probability score for circular variables and its application to mesoscale forecast ensemble verification , 2006 .

[36]  A. Raftery,et al.  Using Bayesian Model Averaging to Calibrate Forecast Ensembles , 2005 .

[37]  Anton H. Westveld,et al.  Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation , 2005 .

[38]  Sylvia Früiiwirth-Schnatter,et al.  Recursive residuals and model diagnostics for normal and non-normal state space models , 1996, Environmental and Ecological Statistics.

[39]  T. Hamill Interpretation of Rank Histograms for Verifying Ensemble Forecasts , 2001 .

[40]  Anthony S. Tay,et al.  Evaluating Density Forecasts with Applications to Financial Risk Management , 1998 .

[41]  Thomas M. Hamill,et al.  Verification of Eta–RSM Short-Range Ensemble Forecasts , 1997 .

[42]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[43]  A. P. Dawid,et al.  Present position and potential developments: some personal views , 1984 .

[44]  R. L. Winkler,et al.  Scoring Rules for Continuous Probability Distributions , 1976 .

[45]  G. Brier VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF PROBABILITY , 1950 .