Non-proteinaceous salivary compounds of a predatory bug cause histopathological and cytotoxic effects in prey.

[1]  Carolina G. Santos,et al.  Cuticle melanization and the expression of immune-related genes in the honeybee Apis mellifera (Hymenoptera: Apidae) adult workers. , 2021, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[2]  J. Zanuncio,et al.  Deltamethrin-Mediated Effects on Locomotion, Respiration, Feeding, and Histological Changes in the Midgut of Spodoptera frugiperda Caterpillars , 2021, Insects.

[3]  J. Zanuncio,et al.  Insecticide potential of two saliva components of the predatory bug Podisus nigrispinus (Heteroptera: Pentatomidae) against Spodoptera frugiperda (Lepidoptera: Noctuidae) caterpillars , 2021, Toxin Reviews.

[4]  J. Serrão,et al.  Spiromesifen induces histopathological and cytotoxic changes in the midgut of the honeybee Apis mellifera (Hymenoptera: Apidae). , 2020, Chemosphere.

[5]  J. Zanuncio,et al.  Side-effects caused by chlorpyrifos in the velvetbean caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae) , 2020 .

[6]  H. Sanderson,et al.  Acute aquatic toxicity of sulfur mustard and its degradation products to Daphnia magna. , 2020, Marine environmental research.

[7]  J. Serrão,et al.  Leaf metabolic profiles of two soybean genotypes differentially affect the survival and the digestibility of Anticarsia gemmatalis caterpillars. , 2020, Plant physiology and biochemistry : PPB.

[8]  W. Terra,et al.  Evolutionary trends of digestion and absorption in the major insect orders. , 2020, Arthropod structure & development.

[9]  J. Zanuncio,et al.  A peritrophin mediates the peritrophic matrix permeability in the workers of the bees Melipona quadrifasciata and Apis mellifera. , 2019, Arthropod structure & development.

[10]  J. Serrão,et al.  Proteomic analysis of the venom of the social wasp Apoica pallens (Hymenoptera: Vespidae) , 2019, Revista Brasileira de Entomologia.

[11]  J. Zanuncio,et al.  Chlorantraniliprole degenerates microvilli goblet cells of the Anticarsia gemmatalis (Lepidoptera: Noctuidae) midgut. , 2019, Chemosphere.

[12]  G. Rivière,et al.  Environmental contamination with persistent cyclic mustard gas impurities and transformation products , 2019, Global Security: Health, Science and Policy.

[13]  D. Hegedus,et al.  Proteomics analysis of Trichoplusia ni midgut epithelial cell brush border membrane vesicles , 2017, Insect science.

[14]  J. Zanuncio,et al.  Toxicological and morphological effects of tebufenozide on Anticarsia gemmatalis (Lepidoptera: Noctuidae) larvae. , 2018, Chemosphere.

[15]  J. Zanuncio,et al.  Histochemistry, immunohistochemistry and cytochemistry of the anterior midgut region of the stingless bee Melipona quadrifasciata and honey bee Apis mellifera (Hymenoptera: Apidae). , 2018, Micron.

[16]  J. Zanuncio,et al.  Squamocin induce histological and ultrastructural changes in the midgut cells of Anticarsia gemmatalis (Lepidoptera: Noctuidae). , 2018, Ecotoxicology and environmental safety.

[17]  V. Wanderley-Teixeira,et al.  Effects of citronella oil (Cymbopogon winterianus Jowitt ex Bor) on Spodoptera frugiperda (J. E. Smith) midgut and fat body , 2017, Biotechnic & histochemistry : official publication of the Biological Stain Commission.

[18]  F. Gillet,et al.  Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis , 2017, PloS one.

[19]  M. C. Baracat-Pereira,et al.  Proteomic analysis of the venom of the predatory ant Pachycondyla striata (Hymenoptera: Formicidae). , 2017, Archives of insect biochemistry and physiology.

[20]  Xu‐Bing Li,et al.  Efficient electronic communication-driven photoinduced charge-separation in 2-ureido-4[1H]-pyrimidinone quadruple hydrogen-bonded N,N-dimethylaniline-anthracene assemblies , 2017 .

[21]  J. Serrão,et al.  Sublethal dose of deltamethrin damage the midgut cells of the mayfly Callibaetis radiatus (Ephemeroptera: Baetidae) , 2017, Environmental Science and Pollution Research.

[22]  J. Serrão,et al.  Density‐dependent prophylaxis in primary anti‐parasite barriers in the velvetbean caterpillar , 2016 .

[23]  J. Jurat-Fuentes,et al.  Intestinal regeneration as an insect resistance mechanism to entomopathogenic bacteria. , 2016, Current opinion in insect science.

[24]  J. Serrão,et al.  Deltamethrin-Mediated Toxicity and Cytomorphological Changes in the Midgut and Nervous System of the Mayfly Callibaetis radiatus , 2016, PloS one.

[25]  G. King,et al.  Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits , 2016, Toxins.

[26]  C. Padovani,et al.  Cytotoxic effects of neem oil in the midgut of the predator Ceraeochrysa claveri. , 2016, Micron.

[27]  J. Zanuncio,et al.  Stink bug predator kills prey with salivary non-proteinaceous compounds. , 2016, Insect biochemistry and molecular biology.

[28]  Salwa M. Ali,et al.  Identification and characterization of antibacterial compound(s) of cockroaches (Periplaneta americana) , 2016, Applied Microbiology and Biotechnology.

[29]  J. Abrahão,et al.  Morpho-functional characterization and esterase patterns of the midgut of Tribolium castaneum Herbst, 1797 (Coleoptera: Tenebrionidae) parasitized by Gregarina cuneata (Apicomplexa: Eugregarinidae). , 2015, Micron.

[30]  A. Schiermeyer,et al.  Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment. , 2015, Annals of botany.

[31]  Daeun Lee,et al.  Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle , 2014, BMB reports.

[32]  N. Paniego,et al.  Transcriptomic Survey of the Midgut of Anthonomus grandis (Coleoptera: Curculionidae) , 2014, Journal of insect science.

[33]  J. Zanuncio,et al.  Ultrastructure and cytochemistry of salivary glands of the predator Podisus nigrispinus (Hemiptera: Pentatomidae) , 2013, Protoplasma.

[34]  H. Ammar,et al.  SUBLETHAL EFFECTS OF SPINOSAD (TRACER®) ON THE COTTON LEAFWORM (LEPIDOPTERA: NOCTUIDAE) , 2013 .

[35]  J. Zanuncio,et al.  Degeneration and cell regeneration in the midgut of Podisus nigrispinus (Heteroptera: Pentatomidae) during post-embryonic development. , 2013, Arthropod structure & development.

[36]  J. Nardi,et al.  Regenerative cells and the architecture of beetle midgut epithelia , 2012, Journal of morphology.

[37]  N. Thakur,et al.  Insect gut nucleases: a challenge for RNA interference mediated insect control strategies , 2012 .

[38]  G. Smagghe,et al.  Search for Limiting Factors in the RNAi Pathway in Silkmoth Tissues and the Bm5 Cell Line: The RNA-Binding Proteins R2D2 and Translin , 2011, PloS one.

[39]  Zibiao Guo,et al.  Major putative pesticide receptors, detoxification enzymes, and transcriptional profile of the midgut of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae). , 2011, Journal of invertebrate pathology.

[40]  S. Mehdi,et al.  Histopathological effects of Datura alba leaf extract on the midgut of Periplaneta americana , 2011 .

[41]  L. Fiuza,et al.  The toxicity and histopathology of Bacillus thuringiensis Cry1Ba toxin to Spodoptera frugiperda (Lepidoptera, Noctuidae) , 2010 .

[42]  Davide Malagoli,et al.  Autophagy and its physiological relevance in arthropods: Current knowledge and perspectives , 2010, Autophagy.

[43]  Lidia Mariana Fiuza,et al.  HISTOPATOLOGIA DA INTERAÇÃO DE BACILLUS THURINGIENSIS E EXTRATOS VEGETAIS NO INTESTINO MÉDIO DE SPODOPTERA FRUGIPERDA (LEPIDOPTERA: NOCTUIDAE) , 2010 .

[44]  A. V. Bednaski,et al.  The effect of sub-lethal doses of Azadirachta indica (Meliaceae) oil on the midgut of Spodoptera frugiperda (Lepidoptera, Noctuidae) , 2010 .

[45]  I. Poprawa,et al.  Differentiation of regenerative cells in the midgut epithelium of Epilachna cf nylanderi (Mulsant 1850) (Insecta, Coleoptera, Coccinellidae). , 2010, Folia biologica.

[46]  J. Calvete,et al.  Venoms, venomics, antivenomics , 2009, FEBS letters.

[47]  J. Casida Pest toxicology: the primary mechanisms of pesticide action. , 2009, Chemical research in toxicology.

[48]  D. Stanley,et al.  Insect cell culture and applications to research and pest management , 2009, In Vitro Cellular & Developmental Biology - Animal.

[49]  D. Hegedus,et al.  New insights into peritrophic matrix synthesis, architecture, and function. , 2009, Annual review of entomology.

[50]  M. Takeda,et al.  Starvation suppresses cell proliferation that rebounds after refeeding in the midgut of the American cockroach, Periplaneta americana. , 2008, Journal of insect physiology.

[51]  C. Ulrichs,et al.  Antifeedant activity and toxicity of leaf extracts from Porteresia coarctata Takeoka and their effects on the physiology of Spodoptera litura (F.) , 2008, Journal of Pest Science.

[52]  L. Ranford-Cartwright,et al.  Morphological evidence for proliferative regeneration of the Anopheles stephensi midgut epithelium following Plasmodium falciparum ookinete invasion. , 2007, Journal of invertebrate pathology.

[53]  S. Tannenbaum,et al.  Identification of adducts formed by reaction of N-acetoxy-3,5-dimethylaniline with DNA. , 2007, Chemical research in toxicology.

[54]  D. Fournier,et al.  The effect of engineered disulfide bonds on the stability of Drosophila melanogaster acetylcholinesterase , 2006, BMC Biochemistry.

[55]  L. A. Toledo,et al.  The larval midgut of Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae): light and electron microscopy studies of the epithelial cells. , 2004, Brazilian journal of biology = Revista brasleira de biologia.

[56]  G. Schmuck,et al.  Effects of the carbamates fenoxycarb, propamocarb and propoxur on energy supply, glucose utilization and SH-groups in neurons. , 2004, Archives of toxicology.

[57]  T. Hopkins,et al.  Lepidopteran peritrophic membranes and effects of dietary wheat germ agglutinin on their formation and structure. , 2001, Archives of insect biochemistry and physiology.

[58]  J. Oh,et al.  Synthesis and structure‐function study about tenecin 1, an antibacterial protein from larvae of Tenebrio molitor , 1998, FEBS letters.

[59]  A. Cohen SOLID-TO-LIQUID FEEDING : THE INSIDE(S) STORY OF EXTRA-ORAL DIGESTION IN PREDACEOUS ARTHROPODA , 1998 .

[60]  G. Febvay,et al.  Protein toxicity to aphids: an in vitro test on Acyrthosiphon pisum , 1993 .

[61]  E. Bell,et al.  The non-protein amino acids of higher plants , 1980 .

[62]  G. Papavizas Fungistatic Activity of Propyl-N-(γ-dimethylaminopropyl) carbamate on Pythium spp. and its Reversal by Sterols , 1978 .

[63]  D. Janzen,et al.  Toxicity of secondary compounds to the seed-eating larvae of the bruchid beetle Callosobruchus maculatus , 1977 .

[64]  R. Gueldner,et al.  Volatile constituents of male and female boll weevils and their frass. , 1974, Journal of insect physiology.

[65]  L. Field,et al.  Biologically oriented organic sulfur chemistry. IV. Synthesis and properties of 1,2,5-trithiepane, a model for study of sulfide and disulfide moieties in proximity , 1970 .

[66]  M. Stefanini,et al.  Fixation of Ejaculated Spermatozoa for Electron Microscopy , 1967, Nature.

[67]  E. Reynolds THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY , 1963, The Journal of cell biology.