Non-proteinaceous salivary compounds of a predatory bug cause histopathological and cytotoxic effects in prey.
暂无分享,去创建一个
J. Serrão | W. Weigand | J. C. Zanuncio | L. C. Martínez | C. Wilcken | A. Plata-Rueda | J. Campos | Lenise Silva Carneiro
[1] Carolina G. Santos,et al. Cuticle melanization and the expression of immune-related genes in the honeybee Apis mellifera (Hymenoptera: Apidae) adult workers. , 2021, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.
[2] J. Zanuncio,et al. Deltamethrin-Mediated Effects on Locomotion, Respiration, Feeding, and Histological Changes in the Midgut of Spodoptera frugiperda Caterpillars , 2021, Insects.
[3] J. Zanuncio,et al. Insecticide potential of two saliva components of the predatory bug Podisus nigrispinus (Heteroptera: Pentatomidae) against Spodoptera frugiperda (Lepidoptera: Noctuidae) caterpillars , 2021, Toxin Reviews.
[4] J. Serrão,et al. Spiromesifen induces histopathological and cytotoxic changes in the midgut of the honeybee Apis mellifera (Hymenoptera: Apidae). , 2020, Chemosphere.
[5] J. Zanuncio,et al. Side-effects caused by chlorpyrifos in the velvetbean caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae) , 2020 .
[6] H. Sanderson,et al. Acute aquatic toxicity of sulfur mustard and its degradation products to Daphnia magna. , 2020, Marine environmental research.
[7] J. Serrão,et al. Leaf metabolic profiles of two soybean genotypes differentially affect the survival and the digestibility of Anticarsia gemmatalis caterpillars. , 2020, Plant physiology and biochemistry : PPB.
[8] W. Terra,et al. Evolutionary trends of digestion and absorption in the major insect orders. , 2020, Arthropod structure & development.
[9] J. Zanuncio,et al. A peritrophin mediates the peritrophic matrix permeability in the workers of the bees Melipona quadrifasciata and Apis mellifera. , 2019, Arthropod structure & development.
[10] J. Serrão,et al. Proteomic analysis of the venom of the social wasp Apoica pallens (Hymenoptera: Vespidae) , 2019, Revista Brasileira de Entomologia.
[11] J. Zanuncio,et al. Chlorantraniliprole degenerates microvilli goblet cells of the Anticarsia gemmatalis (Lepidoptera: Noctuidae) midgut. , 2019, Chemosphere.
[12] G. Rivière,et al. Environmental contamination with persistent cyclic mustard gas impurities and transformation products , 2019, Global Security: Health, Science and Policy.
[13] D. Hegedus,et al. Proteomics analysis of Trichoplusia ni midgut epithelial cell brush border membrane vesicles , 2017, Insect science.
[14] J. Zanuncio,et al. Toxicological and morphological effects of tebufenozide on Anticarsia gemmatalis (Lepidoptera: Noctuidae) larvae. , 2018, Chemosphere.
[15] J. Zanuncio,et al. Histochemistry, immunohistochemistry and cytochemistry of the anterior midgut region of the stingless bee Melipona quadrifasciata and honey bee Apis mellifera (Hymenoptera: Apidae). , 2018, Micron.
[16] J. Zanuncio,et al. Squamocin induce histological and ultrastructural changes in the midgut cells of Anticarsia gemmatalis (Lepidoptera: Noctuidae). , 2018, Ecotoxicology and environmental safety.
[17] V. Wanderley-Teixeira,et al. Effects of citronella oil (Cymbopogon winterianus Jowitt ex Bor) on Spodoptera frugiperda (J. E. Smith) midgut and fat body , 2017, Biotechnic & histochemistry : official publication of the Biological Stain Commission.
[18] F. Gillet,et al. Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis , 2017, PloS one.
[19] M. C. Baracat-Pereira,et al. Proteomic analysis of the venom of the predatory ant Pachycondyla striata (Hymenoptera: Formicidae). , 2017, Archives of insect biochemistry and physiology.
[20] Xu‐Bing Li,et al. Efficient electronic communication-driven photoinduced charge-separation in 2-ureido-4[1H]-pyrimidinone quadruple hydrogen-bonded N,N-dimethylaniline-anthracene assemblies , 2017 .
[21] J. Serrão,et al. Sublethal dose of deltamethrin damage the midgut cells of the mayfly Callibaetis radiatus (Ephemeroptera: Baetidae) , 2017, Environmental Science and Pollution Research.
[22] J. Serrão,et al. Density‐dependent prophylaxis in primary anti‐parasite barriers in the velvetbean caterpillar , 2016 .
[23] J. Jurat-Fuentes,et al. Intestinal regeneration as an insect resistance mechanism to entomopathogenic bacteria. , 2016, Current opinion in insect science.
[24] J. Serrão,et al. Deltamethrin-Mediated Toxicity and Cytomorphological Changes in the Midgut and Nervous System of the Mayfly Callibaetis radiatus , 2016, PloS one.
[25] G. King,et al. Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits , 2016, Toxins.
[26] C. Padovani,et al. Cytotoxic effects of neem oil in the midgut of the predator Ceraeochrysa claveri. , 2016, Micron.
[27] J. Zanuncio,et al. Stink bug predator kills prey with salivary non-proteinaceous compounds. , 2016, Insect biochemistry and molecular biology.
[28] Salwa M. Ali,et al. Identification and characterization of antibacterial compound(s) of cockroaches (Periplaneta americana) , 2016, Applied Microbiology and Biotechnology.
[29] J. Abrahão,et al. Morpho-functional characterization and esterase patterns of the midgut of Tribolium castaneum Herbst, 1797 (Coleoptera: Tenebrionidae) parasitized by Gregarina cuneata (Apicomplexa: Eugregarinidae). , 2015, Micron.
[30] A. Schiermeyer,et al. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment. , 2015, Annals of botany.
[31] Daeun Lee,et al. Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle , 2014, BMB reports.
[32] N. Paniego,et al. Transcriptomic Survey of the Midgut of Anthonomus grandis (Coleoptera: Curculionidae) , 2014, Journal of insect science.
[33] J. Zanuncio,et al. Ultrastructure and cytochemistry of salivary glands of the predator Podisus nigrispinus (Hemiptera: Pentatomidae) , 2013, Protoplasma.
[34] H. Ammar,et al. SUBLETHAL EFFECTS OF SPINOSAD (TRACER®) ON THE COTTON LEAFWORM (LEPIDOPTERA: NOCTUIDAE) , 2013 .
[35] J. Zanuncio,et al. Degeneration and cell regeneration in the midgut of Podisus nigrispinus (Heteroptera: Pentatomidae) during post-embryonic development. , 2013, Arthropod structure & development.
[36] J. Nardi,et al. Regenerative cells and the architecture of beetle midgut epithelia , 2012, Journal of morphology.
[37] N. Thakur,et al. Insect gut nucleases: a challenge for RNA interference mediated insect control strategies , 2012 .
[38] G. Smagghe,et al. Search for Limiting Factors in the RNAi Pathway in Silkmoth Tissues and the Bm5 Cell Line: The RNA-Binding Proteins R2D2 and Translin , 2011, PloS one.
[39] Zibiao Guo,et al. Major putative pesticide receptors, detoxification enzymes, and transcriptional profile of the midgut of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae). , 2011, Journal of invertebrate pathology.
[40] S. Mehdi,et al. Histopathological effects of Datura alba leaf extract on the midgut of Periplaneta americana , 2011 .
[41] L. Fiuza,et al. The toxicity and histopathology of Bacillus thuringiensis Cry1Ba toxin to Spodoptera frugiperda (Lepidoptera, Noctuidae) , 2010 .
[42] Davide Malagoli,et al. Autophagy and its physiological relevance in arthropods: Current knowledge and perspectives , 2010, Autophagy.
[43] Lidia Mariana Fiuza,et al. HISTOPATOLOGIA DA INTERAÇÃO DE BACILLUS THURINGIENSIS E EXTRATOS VEGETAIS NO INTESTINO MÉDIO DE SPODOPTERA FRUGIPERDA (LEPIDOPTERA: NOCTUIDAE) , 2010 .
[44] A. V. Bednaski,et al. The effect of sub-lethal doses of Azadirachta indica (Meliaceae) oil on the midgut of Spodoptera frugiperda (Lepidoptera, Noctuidae) , 2010 .
[45] I. Poprawa,et al. Differentiation of regenerative cells in the midgut epithelium of Epilachna cf nylanderi (Mulsant 1850) (Insecta, Coleoptera, Coccinellidae). , 2010, Folia biologica.
[46] J. Calvete,et al. Venoms, venomics, antivenomics , 2009, FEBS letters.
[47] J. Casida. Pest toxicology: the primary mechanisms of pesticide action. , 2009, Chemical research in toxicology.
[48] D. Stanley,et al. Insect cell culture and applications to research and pest management , 2009, In Vitro Cellular & Developmental Biology - Animal.
[49] D. Hegedus,et al. New insights into peritrophic matrix synthesis, architecture, and function. , 2009, Annual review of entomology.
[50] M. Takeda,et al. Starvation suppresses cell proliferation that rebounds after refeeding in the midgut of the American cockroach, Periplaneta americana. , 2008, Journal of insect physiology.
[51] C. Ulrichs,et al. Antifeedant activity and toxicity of leaf extracts from Porteresia coarctata Takeoka and their effects on the physiology of Spodoptera litura (F.) , 2008, Journal of Pest Science.
[52] L. Ranford-Cartwright,et al. Morphological evidence for proliferative regeneration of the Anopheles stephensi midgut epithelium following Plasmodium falciparum ookinete invasion. , 2007, Journal of invertebrate pathology.
[53] S. Tannenbaum,et al. Identification of adducts formed by reaction of N-acetoxy-3,5-dimethylaniline with DNA. , 2007, Chemical research in toxicology.
[54] D. Fournier,et al. The effect of engineered disulfide bonds on the stability of Drosophila melanogaster acetylcholinesterase , 2006, BMC Biochemistry.
[55] L. A. Toledo,et al. The larval midgut of Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae): light and electron microscopy studies of the epithelial cells. , 2004, Brazilian journal of biology = Revista brasleira de biologia.
[56] G. Schmuck,et al. Effects of the carbamates fenoxycarb, propamocarb and propoxur on energy supply, glucose utilization and SH-groups in neurons. , 2004, Archives of toxicology.
[57] T. Hopkins,et al. Lepidopteran peritrophic membranes and effects of dietary wheat germ agglutinin on their formation and structure. , 2001, Archives of insect biochemistry and physiology.
[58] J. Oh,et al. Synthesis and structure‐function study about tenecin 1, an antibacterial protein from larvae of Tenebrio molitor , 1998, FEBS letters.
[59] A. Cohen. SOLID-TO-LIQUID FEEDING : THE INSIDE(S) STORY OF EXTRA-ORAL DIGESTION IN PREDACEOUS ARTHROPODA , 1998 .
[60] G. Febvay,et al. Protein toxicity to aphids: an in vitro test on Acyrthosiphon pisum , 1993 .
[61] E. Bell,et al. The non-protein amino acids of higher plants , 1980 .
[62] G. Papavizas. Fungistatic Activity of Propyl-N-(γ-dimethylaminopropyl) carbamate on Pythium spp. and its Reversal by Sterols , 1978 .
[63] D. Janzen,et al. Toxicity of secondary compounds to the seed-eating larvae of the bruchid beetle Callosobruchus maculatus , 1977 .
[64] R. Gueldner,et al. Volatile constituents of male and female boll weevils and their frass. , 1974, Journal of insect physiology.
[65] L. Field,et al. Biologically oriented organic sulfur chemistry. IV. Synthesis and properties of 1,2,5-trithiepane, a model for study of sulfide and disulfide moieties in proximity , 1970 .
[66] M. Stefanini,et al. Fixation of Ejaculated Spermatozoa for Electron Microscopy , 1967, Nature.
[67] E. Reynolds. THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY , 1963, The Journal of cell biology.