An Incremental Dimensionality Reduction Method for Visualizing Streaming Multidimensional Data
暂无分享,去创建一个
Kwan-Liu Ma | Takanori Fujiwara | Liu Ren | Jia-Kai Chou | Panpan Xu | Shilpika | Panpan Xu | K. Ma | Liu Ren | Shilpika Shilpika | Takanori Fujiwara | Jia-Kai Chou
[1] J. Hartigan. Printer graphics for clustering , 1975 .
[2] Paulo E. Rauber,et al. Visualizing the Hidden Activity of Artificial Neural Networks , 2017, IEEE Transactions on Visualization and Computer Graphics.
[3] Y. Takane,et al. Multidimensional Scaling I , 2015 .
[4] Ingo Hotz,et al. iPCA : An Interactive System for PCA-based Visual Analytics , 2008 .
[5] Anil K. Jain,et al. Incremental nonlinear dimensionality reduction by manifold learning , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[6] E. Oja,et al. On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix , 1985 .
[7] Klaus Mueller,et al. A framework to visualize temporal behavioral relationships in streaming multivariate data , 2016, 2016 New York Scientific Data Summit (NYSDS).
[8] Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.
[9] Flora S. Tsai. Dimensionality reduction techniques for blog visualization , 2011, Expert Syst. Appl..
[10] R. Bro,et al. Resolving the sign ambiguity in the singular value decomposition , 2008 .
[11] Wei Chen,et al. An online visualization system for streaming log data of computing clusters , 2013 .
[12] Ming-Hsuan Yang,et al. Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.
[13] Michael Jünger,et al. Drawing Large Graphs with a Potential-Field-Based Multilevel Algorithm , 2004, GD.
[14] Luis Gustavo Nonato,et al. Multidimensional Projection for Visual Analytics: Linking Techniques with Distortions, Tasks, and Layout Enrichment , 2019, IEEE Transactions on Visualization and Computer Graphics.
[15] Juyang Weng,et al. Candid Covariance-Free Incremental Principal Component Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[16] Tamara Munzner,et al. Steerable, Progressive Multidimensional Scaling , 2004, IEEE Symposium on Information Visualization.
[17] Alfredo Cuzzocrea,et al. Parallel Coordinates Technique in Visual Data Mining: Advantages, Disadvantages and Combinations , 2013, 2013 17th International Conference on Information Visualisation.
[18] Matthew Chalmers,et al. Fast Multidimensional Scaling Through Sampling, Springs and Interpolation , 2003, Inf. Vis..
[19] Wei Chen,et al. ViDX: Visual Diagnostics of Assembly Line Performance in Smart Factories , 2017, IEEE Transactions on Visualization and Computer Graphics.
[20] Yu-Ru Lin,et al. Voila: Visual Anomaly Detection and Monitoring with Streaming Spatiotemporal Data , 2018, IEEE Transactions on Visualization and Computer Graphics.
[21] Reyer Zwiggelaar,et al. Open Problems in Spectral Dimensionality Reduction , 2014, SpringerBriefs in Computer Science.
[22] W. Cleveland. Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .
[23] I. Jolliffe. Principal Component Analysis and Factor Analysis , 1986 .
[24] Kwan-Liu Ma,et al. An Efficient Framework for Generating Storyline Visualizations from Streaming Data , 2015, IEEE Transactions on Visualization and Computer Graphics.
[25] Patrick J. F. Groenen,et al. Modern Multidimensional Scaling: Theory and Applications , 2003 .
[26] Russ Burtner,et al. CyberPetri at CDX 2016: Real-time network situation awareness , 2016, 2016 IEEE Symposium on Visualization for Cyber Security (VizSec).
[27] L. McMillan,et al. A Fast Approximation to Multidimensional Scaling , 2006 .
[28] P. Schönemann,et al. Fitting one matrix to another under choice of a central dilation and a rigid motion , 1970 .
[29] Daniel A. Keim,et al. Visual Interaction with Dimensionality Reduction: A Structured Literature Analysis , 2017, IEEE Transactions on Visualization and Computer Graphics.
[30] Helwig Hauser,et al. Designing Progressive and Interactive Analytics Processes for High-Dimensional Data Analysis , 2017, IEEE Transactions on Visualization and Computer Graphics.
[31] Jean-Daniel Fekete,et al. GraphDiaries: Animated Transitions andTemporal Navigation for Dynamic Networks , 2014, IEEE Transactions on Visualization and Computer Graphics.
[32] Alfred Inselberg,et al. Parallel coordinates for visualizing multi-dimensional geometry , 1987 .
[33] Thomas Ertl,et al. ScatterBlogs2: Real-Time Monitoring of Microblog Messages through User-Guided Filtering , 2013, IEEE Transactions on Visualization and Computer Graphics.
[34] W. Torgerson. Multidimensional scaling: I. Theory and method , 1952 .
[35] Ralph R. Martin,et al. Incremental Eigenanalysis for Classification , 1998, BMVC.
[36] Boudewijn P. F. Lelieveldt,et al. CyteGuide: Visual Guidance for Hierarchical Single-Cell Analysis , 2018, IEEE Transactions on Visualization and Computer Graphics.
[37] Michael C. Hout,et al. Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.
[38] Geoffrey E. Hinton,et al. Visualizing Data using t-SNE , 2008 .
[39] Guy Melançon,et al. Multiscale hybrid MDS , 2004, Proceedings. Eighth International Conference on Information Visualisation, 2004. IV 2004..
[40] Michael L. Littman,et al. Online Linear Regression and Its Application to Model-Based Reinforcement Learning , 2007, NIPS.
[41] Sebastian Ruder,et al. An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.
[42] David Gotz,et al. Progressive Visual Analytics: User-Driven Visual Exploration of In-Progress Analytics , 2014, IEEE Transactions on Visualization and Computer Graphics.
[43] Carsten Binnig,et al. Progressive Data Science: Potential and Challenges , 2018, ArXiv.
[44] Kwan-Liu Ma,et al. An Incremental Layout Method for Visualizing Online Dynamic Graphs , 2015, J. Graph Algorithms Appl..
[45] Julie Josse,et al. Principal component analysis with missing values: a comparative survey of methods , 2015, Plant Ecology.
[46] A. Inselberg,et al. Parallel coordinates for visualizing multi-dimensional geometry , 1987 .
[47] Jarke J. van Wijk,et al. Reducing Snapshots to Points: A Visual Analytics Approach to Dynamic Network Exploration , 2016, IEEE Transactions on Visualization and Computer Graphics.
[48] Yifan Hu,et al. Interactive Visualization of Streaming Text Data with Dynamic Maps , 2013, J. Graph Algorithms Appl..
[49] Aidong Lu,et al. Discovery of rating fraud with real-time streaming visual analytics , 2015, 2015 IEEE Symposium on Visualization for Cyber Security (VizSec).
[50] Marc Streit,et al. Opening the Black Box: Strategies for Increased User Involvement in Existing Algorithm Implementations , 2014, IEEE Transactions on Visualization and Computer Graphics.
[51] M. Akca. GENERALIZED PROCRUSTES ANALYSIS AND ITS APPLICATIONS IN PHOTOGRAMMETRY , 2003 .
[52] Sébastien Loisel,et al. Comparisons among several methods for handling missing data in principal component analysis (PCA) , 2018, Advances in Data Analysis and Classification.
[53] Daniel A. Keim,et al. Visualization of streaming data: Observing change and context in information visualization techniques , 2013, 2013 IEEE International Conference on Big Data.
[54] Valerio Pascucci,et al. Visualizing High-Dimensional Data: Advances in the Past Decade , 2017, IEEE Transactions on Visualization and Computer Graphics.
[55] R. Fisher. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .
[56] Zoubin Ghahramani,et al. Unifying linear dimensionality reduction , 2014, 1406.0873.
[57] Eric O. Postma,et al. Dimensionality Reduction: A Comparative Review , 2008 .
[58] E. Anderson. The Species Problem in Iris , 1936 .
[59] Jarke J. van Wijk,et al. Smooth and efficient zooming and panning , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).
[60] Pierre Dragicevic,et al. Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data , 2016, IEEE Transactions on Visualization and Computer Graphics.
[61] Daniel A. Keim,et al. Visual Analysis of Time‐Series Similarities for Anomaly Detection in Sensor Networks , 2014, Comput. Graph. Forum.
[62] William Ribarsky,et al. Understanding Principal Component Analysis Using a Visual Analytics Tool , 2009 .
[63] Jian Pei,et al. Online Visual Analytics of Text Streams , 2015, IEEE Transactions on Visualization and Computer Graphics.
[64] Michael Lindenbaum,et al. Sequential Karhunen-Loeve basis extraction and its application to images , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).
[65] Daniel A. Keim,et al. Temporal MDS Plots for Analysis of Multivariate Data , 2016, IEEE Transactions on Visualization and Computer Graphics.
[66] Yifan Hu,et al. GMap: Drawing Graphs as Maps , 2009, GD.
[67] Yaacov Ritov,et al. Local procrustes for manifold embedding: a measure of embedding quality and embedding algorithms , 2009, Machine Learning.
[68] Lyndsey Franklin,et al. Human Factors in Streaming Data Analysis: Challenges and Opportunities for Information Visualization , 2017, Comput. Graph. Forum.
[69] William Ribarsky,et al. iPCA: An Interactive System for PCA‐based Visual Analytics , 2009, Comput. Graph. Forum.
[70] Elmar Eisemann,et al. Approximated and User Steerable tSNE for Progressive Visual Analytics , 2015, IEEE Transactions on Visualization and Computer Graphics.
[71] Matti Pietikäinen,et al. Incremental locally linear embedding , 2005, Pattern Recognit..
[72] Paulo E. Rauber,et al. Visualizing Time-Dependent Data Using Dynamic t-SNE , 2016, EuroVis.
[73] Mengchen Liu,et al. A survey on information visualization: recent advances and challenges , 2014, The Visual Computer.