Regulation of renal Na-(K)-Cl cotransporters by vasopressin

[1]  D. Ellison,et al.  Calcineurin inhibitor cyclosporine A activates renal Na-K-Cl cotransporters via local and systemic mechanisms. , 2017, American journal of physiology. Renal physiology.

[2]  E. Wanker,et al.  Annexin A 2 mediates apical trafficking of renal Na ( + )-K ( + )-2 Cl (-)-cotransporter , 2017 .

[3]  J. Hou,et al.  Mosaic expression of claudins in thick ascending limbs of Henle results in spatial separation of paracellular Na+ and Mg2+ transport , 2016, Proceedings of the National Academy of Sciences.

[4]  M. Mendez,et al.  Vesicle-associated Membrane Protein 3 (VAMP3) Mediates Constitutive Trafficking of the Renal Co-transporter NKCC2 in Thick Ascending Limbs , 2016, The Journal of Biological Chemistry.

[5]  S. Bachmann,et al.  Demonstration of the functional impact of vasopressin signaling in the thick ascending limb by a targeted transgenic rat approach. , 2016, American journal of physiology. Renal physiology.

[6]  D. Ellison,et al.  Renal Deletion of 12 kDa FK506-Binding Protein Attenuates Tacrolimus-Induced Hypertension. , 2016, Journal of the American Society of Nephrology : JASN.

[7]  María Castañeda-Bueno,et al.  Physiological role of SLC12 family members in the kidney. , 2016, American journal of physiology. Renal physiology.

[8]  D. Bichet,et al.  Genetic forms of nephrogenic diabetes insipidus (NDI): Vasopressin receptor defect (X-linked) and aquaporin defect (autosomal recessive and dominant). , 2016, Best practice & research. Clinical endocrinology & metabolism.

[9]  D. Ellison,et al.  Regulation of Renal Electrolyte Transport by WNK and SPAK-OSR1 Kinases. , 2016, Annual review of physiology.

[10]  D. Ellison,et al.  Calcineurin and Sorting-Related Receptor with A-Type Repeats Interact to Regulate the Renal Na⁺-K⁺-2Cl⁻ Cotransporter. , 2016, Journal of the American Society of Nephrology : JASN.

[11]  R. Fenton,et al.  Vasopressin regulation of sodium transport in the distal nephron and collecting duct. , 2015, American journal of physiology. Renal physiology.

[12]  T. Pisitkun,et al.  A Systems Level Analysis of Vasopressin-mediated Signaling Networks in Kidney Distal Convoluted Tubule Cells , 2015, Scientific Reports.

[13]  D. Kohan,et al.  Collecting duct principal cell transport processes and their regulation. , 2015, Clinical journal of the American Society of Nephrology : CJASN.

[14]  D. Ellison,et al.  Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. , 2015, Cell metabolism.

[15]  A. Subramanya,et al.  Distal convoluted tubule. , 2014, Clinical journal of the American Society of Nephrology : CJASN.

[16]  H. Galla,et al.  Cooperative binding of annexin A2 to cholesterol- and phosphatidylinositol-4,5-bisphosphate-containing bilayers. , 2014, Biophysical journal.

[17]  M. Mendez,et al.  Vesicle-associated Membrane Protein 2 (VAMP2) but Not VAMP3 Mediates cAMP-stimulated Trafficking of the Renal Na+-K+-2Cl− Co-transporter NKCC2 in Thick Ascending Limbs* , 2014, The Journal of Biological Chemistry.

[18]  R. Fenton,et al.  Phosphorylation Decreases Ubiquitylation of the Thiazide-sensitive Cotransporter NCC and Subsequent Clathrin-mediated Endocytosis* , 2014, The Journal of Biological Chemistry.

[19]  D. Ellison,et al.  Protein phosphatase 1 inhibitor-1 deficiency reduces phosphorylation of renal NaCl cotransporter and causes arterial hypotension. , 2014, Journal of the American Society of Nephrology : JASN.

[20]  E. Wanker,et al.  Annexin A2 Mediates Apical Trafficking of Renal Na+-K+-2Cl− Cotransporter* , 2014, The Journal of Biological Chemistry.

[21]  J. Sands,et al.  Advances in understanding the urine-concentrating mechanism. , 2014, Annual review of physiology.

[22]  Matteo Trudu,et al.  Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression , 2013, Nature Medicine.

[23]  X. Jeunemaître,et al.  WNK1-related Familial Hyperkalemic Hypertension results from an increased expression of L-WNK1 specifically in the distal nephron , 2013, Proceedings of the National Academy of Sciences.

[24]  H. Galla,et al.  Lipid Segregation and Membrane Budding Induced by the Peripheral Membrane Binding Protein Annexin A2* , 2013, The Journal of Biological Chemistry.

[25]  L. Bankir,et al.  Vasopressin: a novel target for the prevention and retardation of kidney disease? , 2013, Nature Reviews Nephrology.

[26]  D. Ellison,et al.  SPAK differentially mediates vasopressin effects on sodium cotransporters. , 2013, Journal of the American Society of Nephrology : JASN.

[27]  V. Vallon,et al.  Adenylyl cyclase 6 enhances NKCC2 expression and mediates vasopressin-induced phosphorylation of NKCC2 and NCC. , 2013, The American journal of pathology.

[28]  R. Zietse,et al.  The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation , 2013, Pflügers Archiv - European Journal of Physiology.

[29]  P. J. Steinbach,et al.  Identifying protein kinase target preferences using mass spectrometry. , 2012, American journal of physiology. Cell physiology.

[30]  X. Estivill,et al.  KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron , 2012, Nature Genetics.

[31]  Shu-Wha Lin,et al.  Impaired phosphorylation of Na+-K+-2Cl− cotransporter by oxidative stress-responsive kinase-1 deficiency manifests hypotension and Bartter-like syndrome , 2011, Proceedings of the National Academy of Sciences.

[32]  D. Ellison,et al.  A SPAK isoform switch modulates renal salt transport and blood pressure. , 2011, Cell metabolism.

[33]  Robert J. Unwin,et al.  The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension , 2011, Nature Medicine.

[34]  P. Persson,et al.  Activation of the Bumetanide-sensitive Na+,K+,2Cl− Cotransporter (NKCC2) Is Facilitated by Tamm-Horsfall Protein in a Chloride-sensitive Manner* , 2011, The Journal of Biological Chemistry.

[35]  X. Jeunemaître,et al.  Antinatriuretic effect of vasopressin in humans is amiloride sensitive, thus ENaC dependent. , 2011, Clinical journal of the American Society of Nephrology : CJASN.

[36]  R. Lifton,et al.  Rare mutations in the human Na-K-Cl cotransporter (NKCC2) associated with lower blood pressure exhibit impaired processing and transport function. , 2011, American journal of physiology. Renal physiology.

[37]  N. Vázquez,et al.  Rare mutations in SLC12A1 and SLC12A3 protect against hypertension by reducing the activity of renal salt cotransporters , 2011, Journal of hypertension.

[38]  A. Prescott,et al.  Regulation of the NKCC2 ion cotransporter by SPAK-OSR1-dependent and -independent pathways , 2011, Journal of Cell Science.

[39]  M. Caplan,et al.  MAL/VIP17, a New Player in the Regulation of NKCC2 in the Kidney , 2010, Molecular biology of the cell.

[40]  Markus M. Rinschen,et al.  Quantitative phosphoproteomic analysis reveals cAMP/vasopressin-dependent signaling pathways in native renal thick ascending limb cells , 2010, Proceedings of the National Academy of Sciences.

[41]  J. Nielsen,et al.  Vasopressin induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter in the distal convoluted tubule. , 2010, Kidney international.

[42]  S. Bachmann,et al.  Short-term stimulation of the thiazide-sensitive Na+-Cl- cotransporter by vasopressin involves phosphorylation and membrane translocation. , 2010, American journal of physiology. Renal physiology.

[43]  M. Caplan,et al.  MAL / VIP 17 , a New Player in the Regulation of NKCC 2 in the Kidney , 2010 .

[44]  D. Ellison,et al.  Thiazide Effects and Adverse Effects: Insights From Molecular Genetics , 2009, Hypertension.

[45]  P. Ortiz,et al.  cAMP Stimulates Apical Exocytosis of the Renal Na+-K+-2Cl− Cotransporter NKCC2 in the Thick Ascending Limb , 2009, The Journal of Biological Chemistry.

[46]  J. Schnermann,et al.  Isoforms of renal Na-K-2Cl cotransporter NKCC2: expression and functional significance. , 2008, American journal of physiology. Renal physiology.

[47]  H. Schlüter,et al.  Renal Na+-K+-Cl- cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent. , 2008, American journal of physiology. Renal physiology.

[48]  J. Schnermann,et al.  Tubuloglomerular feedback: mechanistic insights from gene-manipulated mice. , 2008, Kidney international.

[49]  K. Tomita,et al.  Vasopressin regulates the renin-angiotensin-aldosterone system via V1a receptors in macula densa cells. , 2008, American journal of physiology. Renal physiology.

[50]  W. Müller-Esterl,et al.  Vasopressin V2 receptor expression along rat, mouse, and human renal epithelia with focus on TAL. , 2007, American journal of physiology. Renal physiology.

[51]  L. Bankir,et al.  Ethnic differences in urine concentration: possible relationship to blood pressure. , 2007, Clinical journal of the American Society of Nephrology : CJASN.

[52]  J. Sands,et al.  Vasopressin increases plasma membrane accumulation of urea transporter UT-A1 in rat inner medullary collecting ducts. , 2006, Journal of the American Society of Nephrology : JASN.

[53]  P. Deen,et al.  Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. , 2006, American journal of physiology. Renal physiology.

[54]  J. Verbalis,et al.  Increased renal alpha-ENaC and NCC abundance and elevated blood pressure are independent of hyperaldosteronism in vasopressin escape. , 2006, American journal of physiology. Renal physiology.

[55]  B. Forbush,et al.  Regulatory phosphorylation sites in the NH2 terminus of the renal Na-K-Cl cotransporter (NKCC2). , 2005, American journal of physiology. Renal physiology.

[56]  L. Bankir,et al.  Vasopressin-V2 receptor stimulation reduces sodium excretion in healthy humans. , 2005, Journal of the American Society of Nephrology : JASN.

[57]  S. Hebert,et al.  Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: II. Determinants of the ADH-mediated increases in transepithelial voltage and in net Cl− absorption , 2005, The Journal of Membrane Biology.

[58]  Volker Gerke,et al.  Annexins – unique membrane binding proteins with diverse functions , 2004, Journal of Cell Science.

[59]  O. Tenstad,et al.  The effect of AVP-V receptor stimulation on local GFR in the rat kidney. , 2004, Acta physiologica Scandinavica.

[60]  L. Bankir,et al.  Diabetes-induced albuminuria: role of antidiuretic hormone as revealed by chronic V2 receptor antagonism in rats. , 2003, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[61]  B. Forbush,et al.  Short-term Stimulation of the Renal Na-K-Cl Cotransporter (NKCC2) by Vasopressin Involves Phosphorylation and Membrane Translocation of the Protein* , 2003, Journal of Biological Chemistry.

[62]  A. Hagège,et al.  Chronic V2 Vasopressin Receptor Stimulation Increases Basal Blood Pressure and Exacerbates Deoxycorticosterone Acetate-Salt Hypertension. , 2002, Endocrinology.

[63]  A. Hagège,et al.  Chronic V2 vasopressin receptor stimulation increases basal blood pressure and exacerbates deoxycorticosterone acetate-salt hypertension. , 2002, Endocrinology.

[64]  L. Bankir,et al.  Chronic Exposure to Vasopressin Upregulates ENaC and Sodium Transport in the Rat Renal Collecting Duct and Lung , 2001, Hypertension.

[65]  Gnana Bharathy,et al.  Regulation of the Abundance of Renal Sodium Transporters and Channels by Vasopressin , 2001, Experimental Neurology.

[66]  L. Bankir,et al.  Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor-mediated effects. , 2001, Cardiovascular research.

[67]  Robert J. Unwin,et al.  Human Hypertension Caused by Mutations in WNK Kinases , 2001, Science.

[68]  O. Tenstad,et al.  The effect of AVP-V2 receptor stimulation on local GFR in the rat kidney. , 2004, Acta physiologica Scandinavica.

[69]  G. H. Kim,et al.  Vasopressin-mediated regulation of epithelial sodium channel abundance in rat kidney. , 2000, American journal of physiology. Renal physiology.

[70]  D. Ellison,et al.  Sodium transport-related proteins in the mammalian distal nephron – distribution, ontogeny and functional aspects , 1999, Anatomy and Embryology.

[71]  L. Bankir,et al.  Vasopressin contributes to hyperfiltration, albuminuria, and renal hypertrophy in diabetes mellitus: study in vasopressin-deficient Brattleboro rats. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[72]  P. Deen,et al.  Vasopressin type-2 receptor and aquaporin-2 water channel mutants in nephrogenic diabetes insipidus. , 1998, The American journal of the medical sciences.

[73]  G. Bakris,et al.  Role of vasopressin in essential hypertension: Racial differences , 1997, Journal of hypertension.

[74]  P. Igarashi,et al.  Cloning and Kidney Cell-specific Activity of the Promoter of the Murine Renal Na-K-Cl Cotransporter Gene (*) , 1996, The Journal of Biological Chemistry.

[75]  R. Lifton,et al.  Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. , 1996, Nature genetics.

[76]  R. Lifton,et al.  Gitelman's variant of Barter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na–Cl cotransporter , 1996, Nature Genetics.

[77]  W. S. Lee,et al.  Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. , 1994, The Journal of biological chemistry.

[78]  W. Young,et al.  Expression of vasopressin V1a and V2 receptor messenger ribonucleic acid in the liver and kidney of embryonic, developing, and adult rats. , 1993, Endocrinology.

[79]  M. Brownstein,et al.  Molecular cloning and expression of rat V1a and V2 arginine vasopressin receptors , 1993, Regulatory Peptides.

[80]  A. Aperia,et al.  Control of electrolyte transport in the kidney through a dopamine- and cAMP-regulated phosphoprotein, DARPP-32. , 1992, Journal of autonomic pharmacology.

[81]  P. Greengard,et al.  Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices , 1990, Nature.

[82]  F. Morel Sites of hormone action in the mammalian nephron. , 1981, The American journal of physiology.