The Modeling of 2D Controlled Source Audio Magnetotelluric (Csamt) Responses Using Finite Element Method

This paper presents the modeling of 2D CSAMT responses generated by horizontal electric dipole using the separation of primary and secondary field technique. The primary field is calculated using 1D analytical solution for homogeneous earth and it is used to calculate the secondary electric field in the inhomogeneous Helmholtz Equation. Calculation of Helmholtz Equation is carried out using the finite element method. Validation of this modeling is conducted by comparison of numerical results with 1D analytical response for the case of homogeneous and layered earth. The comparison of CSAMT responses are also provided for 2D cases of vertical contact and anomalous conductive body with the 2D magnetotelluric (MT) responses. The results of this study are expected to provide better interpretation of the 2D CSAMT data.

[1]  N. R. Carlson,et al.  Structure mapping at Trap Spring Oilfield, Nevada, using controlled-source magnetotellurics , 1987 .

[2]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[3]  Gregory A. Newman,et al.  Transient electromagnetic response of a three-dimensional body in a layered earth , 1986 .

[4]  Rita Streich,et al.  3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy , 2009 .

[5]  Walter L. Anderson,et al.  A hybrid fast Hankel transform algorithm for electromagnetic modeling , 1989 .

[6]  Kerry Key,et al.  2D marine controlled-source electromagnetic modeling: Part 1 — An adaptive finite-element algorithm , 2007 .

[7]  D. W. Strangway,et al.  Audio-frequency magnetotellurics with a grounded electric dipole source , 1975 .

[8]  Y. Mitsuhata 2-D electromagnetic modeling by finite‐element method with a dipole source and topography , 2000 .

[9]  Further evidence of electrical anomalies over hydrocarbon accumulations using CSAMT , 1983 .

[10]  G. W. Hohmann,et al.  4. Electromagnetic Theory for Geophysical Applications , 1987 .

[11]  Y. Sasaki,et al.  Resistivity imaging of controlled‐source audiofrequency magnetotelluric data , 1992 .

[12]  W Hohmann Gerald,et al.  Numerical modeling for electromagnetic methods of geophysics , 1987 .

[13]  P. Wannamaker Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, U.S.A., Part I: Implications for structure of the western caldera , 1997 .

[14]  Gerald W. Hohmann,et al.  Controlled‐source audiofrequency magnetotelluric responses of three‐dimensional bodies , 1991 .

[15]  G. Keller,et al.  Frequency and transient soundings , 1983 .

[16]  N. P. Singh,et al.  EMDPLER: A F77 program for modeling the EM response of dipolar sources over the non-magnetic layer earth models , 2010, Comput. Geosci..

[17]  Walter L. Anderson,et al.  Computer program; numerical integration of related Hankel transforms of orders O and 1 by adaptive digital filtering , 1979 .

[18]  W. H. Pelton,et al.  CSAMT Case Histories With a Multichannel CSAMT System And Near-field Data Correction , 1985 .

[19]  Alan D. Chave,et al.  Electromagnetic induction by a finite electric dipole source over a 2-D earth , 1993 .

[20]  Kenneth L. Zonge,et al.  9. Controlled Source Audio-Frequency Magnetotellurics , 1991 .

[21]  R. D. Jacobson,et al.  Results of a controlled-source audiofrequency magnetotelluric survey at the Puhimau thermal area, Kilauea Volcano, Hawaii , 1987 .

[22]  R. Greenfield,et al.  Numerical solutions of the response of a two-dimensional earth to an oscillating magnetic dipole source , 1976 .

[23]  Philip E. Wannamaker,et al.  Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, U.S.A., Part II: Implications for CSAMT methodology , 1997 .