Global tomography from Rayleigh and Love wave dispersion: effect of ray-path bending

SUMMARY A large data set of fundamental-mode Rayleigh and Love wave phases has been employed for global tomographic inversions. These data represent observations of the first arriving surface waves R1 and L1 from approximately 850 seismic events, with about 10 observations of dispersion per event. The inversion for laterally varying depth-dependent structure is performed in several steps. At discrete periods from 111s–250s for Love waves, and from 111s–200s for Rayleigh waves, we first determine simultaneously the global distribution of phase-velocity anomaly and the relocations of the seismic events. Each phase-velocity distribution is then corrected for laterally varying Moho depth and bathymetry, followed by inversion for 3-D earth structure in the depth range 0–240 km. In order to lie within the limits of ray theory we restrict all model perturbations to a degree 0–16 spherical-harmonic expansion. A second-order scattering (ray path) correction is included in the inversions. The phase-velocity perturbations show a high correlation with surface tectonics at shorter periods. Comparison of inversions shows that those performed without the ray-path correction exhibit a complicated pattern of fast- and slow-velocity bias. The only common feature in the patterns of bias (with respect to period or wave type) is that fast velocity bias is concentrated in regions of large structural gradient. The amplitude pattern of the depth-dependent model has pronounced peaks in the intervals 0–70 km and 140–210 km. The deeper peak is associated with lateral variations in asthenosphere structure. We derive new estimates for the spherically averaged phase velocities of the fundamental-mode Rayleigh and Love waves. The spherically averaged phase velocities are decreased by about 0.1 per cent by including the ray-path correction. These phase-velocity dispersions can be simultaneously fit well with an isotropic model either with or without the ray-path correction, but particularly well when the ray-path correction is included. In both cases a pronounced low-velocity zone of the global extent is required in the depth range 120–190 km.

[1]  G. Masters,et al.  Frequency-dependent polarization measurements of long-period surface waves and their implications for global phase-velocity maps , 1994 .

[2]  Wei-jia Su,et al.  Degree 12 model of shear velocity heterogeneity in the mantle , 1994 .

[3]  H. Nataf,et al.  Seismological detection of a mantle plume? , 1993, Nature.

[4]  Toshiro Tanimoto,et al.  High-resolution global upper mantle structure and plate tectonics , 1993 .

[5]  F. Pollitz,et al.  Analysis of Rayleigh wave refraction from three‐component seismic spectra , 1993 .

[6]  A. Milev,et al.  Global patterns of azimuthal anisotropy and deformations in the continental mantle , 1992 .

[7]  A. Dziewoński,et al.  Deep origin of mid-ocean-ridge seismic velocity anomalies , 1992, Nature.

[8]  F. Pollitz Propagation of surface waves on a laterally heterogeneous earth: asymptotic solution of the two-dimensional wave equation , 1992 .

[9]  A. Dziewoński,et al.  Centroid-moment tensor solutions for July–September 1991 , 1992 .

[10]  G. Müller,et al.  Seismic-wave traveltimes in random media , 1992 .

[11]  S. Roecker,et al.  Shear-wave splitting and small-scale convection in the continental upper mantle , 1992, Nature.

[12]  G. Masters,et al.  Upper mantle structure from long-period differential traveltimes and free oscillation data , 1992 .

[13]  Roel Snieder,et al.  Ray perturbation theory for traveltimes and ray paths in 3-D heterogeneous media , 1992 .

[14]  A. Dziewoński,et al.  Centroid-moment tensor solutions for January–March 1991 , 1992 .

[15]  Jean-Paul Montagner,et al.  Global upper mantle tomography of seismic velocities and anisotropies , 1991 .

[16]  W. Thatcher,et al.  Faulting geometry and slip from co-seismic elevation changes: The 18 October 1989, Loma Prieta, California, earthquake , 1991 .

[17]  Paul G. Silver,et al.  Shear wave splitting and subcontinental mantle deformation , 1991 .

[18]  F. Pollitz Two-stage model of African absolute motion during the last 30 million years , 1991 .

[19]  Jeffrey Park,et al.  Normal mode multiplet coupling along a dispersion branch , 1991 .

[20]  Robert L. Woodward,et al.  Global upper mantle structure from long-period differential travel times , 1991 .

[21]  F. Pollitz Recovery of aspherical earth structure from observations of normal mode amplitudes , 1990 .

[22]  F. Pollitz Correction of normal mode frequencies and amplitudes for the effect of spheroidal-toroidal coupling , 1990 .

[23]  T. Tanimoto,et al.  Global anisotropy in the upper mantle inferred from the regionalization of phase velocities , 1990 .

[24]  Jeffrey Park,et al.  The subspace projection method for constructing coupled-mode synthetic seismograms , 1990 .

[25]  D. L. Anderson,et al.  Constrained reference mantle model , 1989 .

[26]  T. Tanimoto,et al.  Three-dimensional modelling of upper mantle structure under the Pacific Ocean and surrounding area , 1989 .

[27]  G. Masters,et al.  Aspherical structure constraints from free oscillation frequency and attenuation measurements , 1989 .

[28]  D. Forsyth,et al.  The anisotropic structure of the upper mantle in the Pacific , 1989 .

[29]  J. Montagner,et al.  Vectorial tomography—II. Application to the Indian Ocean , 1988 .

[30]  T. Tanimoto The 3-D shear wave structure in the mantle by overtone waveform inversion-II. Inversion of X-waves, R-waves and G-waves , 1988 .

[31]  Arthur L. Lerner-Lam,et al.  How Thick Are the Continents , 1987 .

[32]  B. Romanowicz Multiplet-multiplet coupling due to lateral heterogeneity: asymptotic effects on the amplitude and frequency of the Earth's normal modes , 1987 .

[33]  Jeffrey Park Asymptotic coupled-mode expressions for multiplet amplitude anomalies and frequency shifts on an aspherical earth , 1987 .

[34]  P. Shearer,et al.  Compressional and shear wave anisotropy in the oceanic lithosphere - the Ngendei seismic refraction experiment , 1986 .

[35]  J. Woodhouse,et al.  Amplitude, phase and path anomalies of mantle waves , 1986 .

[36]  F. Dahlen,et al.  Asymptotic normal modes of a laterally heterogeneous Earth: 2. Further results , 1986 .

[37]  A. Dziewoński,et al.  Centroid-moment tensor solutions for October-December 1985 , 1986 .

[38]  D. L. Anderson,et al.  Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy: 3. Inversion , 1986 .

[39]  Freeman Gilbert,et al.  Coupled free oscillations of an aspherical, dissipative, rotating Earth: Galerkin theory , 1986 .

[40]  J. Davis,et al.  Validity of the great circular average approximation for inversion of normal mode measurements , 1986 .

[41]  A. Dziewoński,et al.  Centroid-moment tensor solutions for July–September 1985 , 1986 .

[42]  F. Dahlen,et al.  Asymptotic normal modes of a laterally heterogeneous Earth , 1985 .

[43]  Don L. Anderson,et al.  Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250 s , 1985 .

[44]  H. Kanamori,et al.  Geometric effects of global lateral heterogeneity on long‐period surface wave propagation , 1985 .

[45]  A. Dziewoński,et al.  Centroid-moment tensor solutions for January–March, 1984 , 1984 .

[46]  D. L. Anderson,et al.  Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy. II - Analysis by the single-station method , 1984 .

[47]  John H. Woodhouse,et al.  Mapping the upper mantle: Three‐dimensional modeling of earth structure by inversion of seismic waveforms , 1984 .

[48]  D. L. Anderson,et al.  Mapping convection in the mantle , 1984 .

[49]  Don L. Anderson,et al.  Anisotropy and shear-velocity heterogeneities in the upper mantle , 1984 .

[50]  D. Helmberger,et al.  Upper mantle shear structure of North America , 1984 .

[51]  G. Masters,et al.  Observations of coupled spheroidal and toroidal modes , 1983 .

[52]  D. L. Anderson,et al.  Measurement of mantle wave velocities and inversion for lateral heterogeneity and anisotropy: 1. Analysis of Great Circle Phase Velocities , 1983 .

[53]  J. Lévêque,et al.  Long-period Love wave overtone data in North America and the Pacific Ocean: new evidence for upper mantle anisotropy , 1983 .

[54]  John H. Woodhouse,et al.  CENTROID-MOMENT TENSOR SOLUTIONS FOR 201 MODERATE AND LARGE EARTHQUAKES OF 1981 , 1983 .

[55]  D. L. Anderson,et al.  Upper mantle anisotropy - Evidence from free oscillations , 1982 .

[56]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[57]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[58]  F. A. Dahlen,et al.  A uniformly valid asymptotic representation of normal mode multiplet spectra on a laterally heterogeneous Earth , 1980 .

[59]  G. Nolet,et al.  New inferences from higher mode data in western Europe and northern Eurasia , 1980 .

[60]  M. Cara Lateral variations of S velocity in the upper mantle from higher Rayleigh modes , 1979 .

[61]  B. Mitchell,et al.  Regionalized shear velocity models of the Pacific upper mantle from observed Love and Rayleigh wave dispersion , 1979 .

[62]  F. A. Dahlen,et al.  The Effect of A General Aspherical Perturbation on the Free Oscillations of the Earth , 1978 .

[63]  F. Dahlen Reply [to “Comments on ‘The correction of great circular surface wave phase velocity measurements from the rotation and ellipticity of the Earth’ by F. A. Dahlen”] , 1976 .

[64]  Don L. Anderson,et al.  An Earth Model based on free oscillations and body waves , 1976 .

[65]  F. Dahlen The correction of great circular surface wave phase velocity measurements for the rotation and ellipticity of the Earth , 1975 .

[66]  D. L. Anderson,et al.  Theoretical Basis of Some Empirical Relations in Seismology by Hiroo Kanamori And , 1975 .

[67]  Adam M. Dziewonski,et al.  Parametrically simple earth models consistent with geophysical data , 1975 .

[68]  F. Gilbert,et al.  An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[69]  K. Aki,et al.  Scaling law of earthquake source time-function : GEOPHYS. J. ROY. ASTRON. SOC. V1, N1–3, 1972, P3–25 , 1974 .

[70]  K. Aki Scaling Law of Earthquake Source Time-Function , 1972 .

[71]  A. L. Hales,et al.  P-wave station anomalies and the structure of the upper mantle , 1968 .

[72]  T. V. McEvilly,et al.  Central U.S. crust—Upper mantle structure from Love and Rayleigh wave phase velocity inversion , 1964 .

[73]  Ari Ben-Menahem,et al.  Radiation of seismic surface-waves from finite moving sources , 1961 .

[74]  Eléonore Stutzmann Tomographie du manteau a partir des modes harmoniques des ondes de surface , 1993 .

[75]  A. Dziewoński,et al.  Centroid-moment tensor solutions for October-December 1989 , 1990 .

[76]  R. Snieder On the connection between ray theory and scattering theory for surface waves , 1988 .

[77]  E. Wielandt On the validity of the ray approximation for interpreting delay times , 1987 .

[78]  J. Montagner Regional three-dimensional structures using long-period surface waves , 1986 .

[79]  B. Mitchell On the inversion of Love- and Rayleigh-wave dispersion and implications for Earth structure and anisotropy , 1984 .

[80]  Lester A. Rubenfeld,et al.  Advanced calculus and its applications to the engineering and physical sciences , 1980 .