Spectral heterogeneity of honeybee ommatidia

The honeybee compound eye is equipped with ultraviolet, blue, and green receptors, which form the physiological basis of a trichromatic color vision system. We studied the distribution of the spectral receptors by localizing the three mRNAs encoding the opsins of the ultraviolet-, blue- and green-absorbing visual pigments. The expression patterns of the three opsin mRNAs demonstrated that three distinct types ommatidia exist, refuting the common assumption that the ommatidia composing the bee compound eye contain identical sets of spectral receptors. We found that type I ommatidia contain one ultraviolet and one blue receptor, type II ommatidia contain two ultraviolet receptors, and type III ommatidia have two blue receptors. All the three ommatidial types contain six green receptors. The ommatidia appear to be distributed rather randomly over the retina. The ratio of type I, II, and III ommatidia was about 44:46:10. Type III ommatidia appeared to be slightly more frequent (18%) in the anterior part of the ventral region of the eye. Retinal heterogeneity and ommatidial randomness, first clearly demonstrated in butterflies, seems to be a common design principle of the eyes of insects.

[1]  R. Menzel,et al.  Colour receptors in the bee eye — Morphology and spectral sensitivity , 1976, Journal of comparative physiology.

[2]  M. Giurfa,et al.  How bees detect coloured targets using different regions of their compound eyes , 1999, Journal of Comparative Physiology A.

[3]  R. Schwind,et al.  Microspectrophotometric characterization and localization of three visual pigments in the compound eye ofNotonecta glauca L. (Heteroptera) , 1984, Journal of Comparative Physiology A.

[4]  D. Stavenga,et al.  Random array of colour filters in the eyes of butterflies , 1997, The Journal of experimental biology.

[5]  A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora , 2004, Journal of Experimental Biology.

[6]  D. Stavenga,et al.  Coexpression of Two Visual Pigments in a Photoreceptor Causes an Abnormally Broad Spectral Sensitivity in the Eye of the Butterfly Papilio xuthus , 2003, The Journal of Neuroscience.

[7]  Richard H. White,et al.  The retina of Manduca sexta: rhodopsin expression, the mosaic of green-, blue- and UV-sensitive photoreceptors, and regional specialization , 2003, Journal of Experimental Biology.

[8]  R. Menzel,et al.  Antagonistic color effects in spatial vision of honeybees , 1983, Journal of comparative physiology.

[9]  G. D. Bernard,et al.  Not all butterfly eyes are created equal: Rhodopsin absorption spectra, molecular identification, and localization of ultraviolet‐, blue‐, and green‐sensitive rhodopsin‐encoding mRNAs in the retina of Vanessa cardui , 2003, The Journal of comparative neurology.

[10]  Roger C. Hardie,et al.  The photoreceptor array of the dipteran retina , 1986, Trends in Neurosciences.

[11]  Allan W. Snyder,et al.  Spatial information capacity of compound eyes , 2004, Journal of comparative physiology.

[12]  Steven M. Reppert,et al.  Connecting the Navigational Clock to Sun Compass Input in Monarch Butterfly Brain , 2005, Neuron.

[13]  W. Kaiser,et al.  Die optomotorischen Reaktionen von fixiert fliegenden Bienen bei Reizung mit Spektrallichtern , 1974, Journal of comparative physiology.

[14]  Doekele G. Stavenga,et al.  Ommatidial heterogeneity in the compound eye of the male small white butterfly, Pieris rapae crucivora , 2002, Cell and Tissue Research.

[15]  Randolf Menzel,et al.  Discrimination of coloured stimuli by honeybees: alternative use of achromatic and chromatic signals , 1997, Journal of Comparative Physiology A.

[16]  M. Lehrer,et al.  Dorsoventral asymmetry of colour discrimination in bees , 1999, Journal of Comparative Physiology A.

[17]  Martin Egelhaaf,et al.  Neural Mechanisms of Visual Course Control in Insects , 1989 .

[18]  K. Frisch Der Farbensinn und Formensinn der Biene , 1914 .

[19]  N. Pierce,et al.  Honeybee Blue- and Ultraviolet-Sensitive Opsins: Cloning, Heterologous Expression in Drosophila, and Physiological Characterization , 1998, The Journal of Neuroscience.

[20]  Doekele G Stavenga,et al.  Reflections on colourful ommatidia of butterfly eyes. , 2002, The Journal of experimental biology.

[21]  K. Arikawa Spectral organization of the eye of a butterfly, Papilio , 2003, Journal of Comparative Physiology A.

[22]  N. Pierce,et al.  Cloning of the gene encoding honeybee long-wavelength rhodopsin: a new class of insect visual pigments. , 1996, Gene.

[23]  A. Briscoe,et al.  Molecular characterization and expression of the UV opsin in bumblebees: three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina , 2005, Journal of Experimental Biology.

[24]  Allan W. Snyder,et al.  Polarised light detection in the bee,Apis mellifera , 1974, Journal of comparative physiology.

[25]  M. Wiener,et al.  Animal eyes. , 1957, The American orthoptic journal.