Multi-source operator channels: Efficient capacity-achieving codes

The network communication scenario where one or more receivers request all the information transmitted by different sources is considered. We introduce the first polynomial-time (in network size) network codes that achieve any point inside the rate-region for the problem of multiple-source multicast in the presence of malicious errors, for any fixed number of sources. Our codes are fully distributed and different sources require no knowledge of the data transmitted by their peers. Our codes are “end-to-end”, that is, all nodes apart from the sources and the receivers are oblivious to the adversaries present in the network and simply implement random linear network coding.

[1]  Tracey Ho,et al.  Resilient network coding in the presence of Byzantine adversaries , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[2]  Tracey Ho,et al.  A Random Linear Network Coding Approach to Multicast , 2006, IEEE Transactions on Information Theory.

[3]  Frank R. Kschischang,et al.  Capacity of random network coding under a probabilistic error model , 2008, 2008 24th Biennial Symposium on Communications.

[4]  F. Kschischang,et al.  Adversarial error correction for network coding: Models and metrics , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[5]  Christina Fragouli,et al.  Code construction for multiple sources network coding , 2009, MobiHoc S3 '09.

[6]  Richard Zippel,et al.  Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.

[7]  Andrea Montanari,et al.  Coding for Network Coding , 2007, ArXiv.

[8]  Ning Cai,et al.  Network coding and error correction , 2002, Proceedings of the IEEE Information Theory Workshop.

[9]  Suhas N. Diggavi,et al.  Noncoherent multisource network coding , 2008, 2008 IEEE International Symposium on Information Theory.

[10]  Peter Sanders,et al.  Polynomial time algorithms for multicast network code construction , 2005, IEEE Transactions on Information Theory.

[11]  Muriel Medard,et al.  On Randomized Network Coding , 2003 .

[12]  Tracey Ho,et al.  Rate rRegions for coherent and noncoherent multisource network error correction , 2009, 2009 IEEE International Symposium on Information Theory.

[13]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.

[14]  Frank R. Kschischang,et al.  On Metrics for Error Correction in Network Coding , 2008, IEEE Transactions on Information Theory.

[15]  Suhas N. Diggavi,et al.  On the capacity of non-coherent network coding , 2009, 2009 IEEE International Symposium on Information Theory.

[16]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.