Parameters of retinal graft-mediated responses are related to underlying target innervation

[1]  V. Perry,et al.  Microglia in retinae transplanted to the central nervous system , 1989, Neuroscience.

[2]  C. M. Cicerone,et al.  Consensual pupillary light reflex in the pigmented rat , 1989, Vision Research.

[3]  R. Lund,et al.  Development of dopamine innervation and turning behavior in dopamine-depleted infant rats receiving unilateral nigral transplants , 1989, Neuroscience.

[4]  R. Lund,et al.  Degeneration of optic axons induces the expression of major histocompatibility antigens , 1989, Brain Research.

[5]  R. Lund,et al.  Light-evoked cortical activity produced by illumination of intracranial retinal transplants: Experimental studies in rats , 1989, Experimental Neurology.

[6]  A. Björklund,et al.  Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum—I. Subcortical afferents , 1988, Neuroscience.

[7]  R. Lund,et al.  Anatomical and behavioral correlates of a xenograft-mediated pupillary reflex , 1988, Experimental Neurology.

[8]  R. Lund,et al.  INSTABILITY OF NEURAL XENOGRAFTS PLACED IN NEONATAL RAT BRAINS , 1988, Transplantation.

[9]  G. W. Balkema Elevated dark-adapted thresholds in albino rodents. , 1988, Investigative ophthalmology & visual science.

[10]  A. Björklund,et al.  Mechanisms of action of intracerebral neural implants: studies on nigral and striatal grafts to the lesioned striatum , 1987, Trends in Neurosciences.

[11]  R. Lund,et al.  Retinal transplants can drive a pupillary reflex in host rat brains. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[12]  W. J. Freed,et al.  Chronic intrastriatal dopamine infusions in rats with unilateral lesions of the substantia nigra. , 1987, Life sciences.

[13]  C. Sotelo,et al.  Reconstruction of the defective cerebellar circuitry in adult purkinje cell degeneration mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants , 1987, Neuroscience.

[14]  A. Björklund,et al.  Graft-induced behavioral recovery in an animal model of Huntington disease. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Coyle,et al.  Anatomical predictors of behavioral recovery following fetal striatal transplants , 1986, Brain Research.

[16]  P. Reier,et al.  Neural tissue transplants rescue axotomized rubrospinal cells from retrograde death , 1986, The Journal of comparative neurology.

[17]  R. Lund,et al.  Use of a species-specific antibody for demonstrating mouse neurons transplanted to rat brains , 1985, Neuroscience Letters.

[18]  A. Lieberman,et al.  The olivary pretectal nucleus: experimental anatomical studies in the rat. , 1985, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[19]  R. Lund,et al.  Fetal retinae transplanted over tecta of neonatal rats respond to light and evoke patterned neuronal discharges in the host superior colliculus. , 1985, Brain research.

[20]  F. Gage,et al.  Functional neuronal replacement by grafted striatal neurones in the ibotenic acid-lesioned rat striatum , 1984, Nature.

[21]  C. M. Cicerone,et al.  Cells in the pretectal olivary nucleus are in the pathway for the direct light reflex of the pupil in the rat , 1984, Brain Research.

[22]  J. Coyle,et al.  Reversal of long-term locomotor abnormalities in the kainic acid model of Huntington's disease by day 18 fetal striatal implants. , 1983, European journal of pharmacology.

[23]  A. Björklund,et al.  Septal transplants restore maze learning in rats with fornix-fimbria lesions , 1982, Brain Research.

[24]  S. Hsu,et al.  Color modification of diaminobenzidine (DAB) precipitation by metallic ions and its application for double immunohistochemistry. , 1982, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[25]  E. Zimmerman,et al.  Brain grafts reverse hypogonadism of gonadotropin releasing hormone deficiency , 1982, Nature.

[26]  A. Björklund,et al.  Functional Activity of Substantia Nigra Grafts Reinnervating the Striatum: Neurotransmitter Metabolism and [14C]2‐Deoxy‐d‐glucose Autoradiography , 1982, Journal of neurochemistry.

[27]  A. Aguayo,et al.  Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. , 1981, Science.

[28]  W. Freed,et al.  Transplanted adrenal chromaffin cells in rat brain reduce lesion-induced rotational behaviour , 1981, Nature.

[29]  A. Björklund,et al.  Reinnervation of the denervated striatum by substantia nigra transplants: Functional consequences as revealed by pharmacological and sensorimotor testing , 1980, Brain Research.

[30]  F. Scalia,et al.  Topographic organization of the projections of the retina to the pretectal region in the rat , 1979, The Journal of comparative neurology.

[31]  B J Hoffer,et al.  Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. , 1979, Science.

[32]  S. W. Ranson,et al.  THE AFFERENT PATH OF THE LIGHT REFLEX: A REVIEW OF THE LITERATURE , 1935 .

[33]  S. W. Ranson,et al.  THE CENTRAL PATH OF THE LIGHT REFLEX: A STUDY OF THE EFFECT OF LESIONS , 1935 .

[34]  H. Magoun MAINTENANCE OF THE LIGHT REFLEX AFTER DESTRUCTION OF THE SUPERIOR COLLICULUS IN THE CAT , 1935 .

[35]  A. Björklund,et al.  Intracerebral neural implants: neuronal replacement and reconstruction of damaged circuitries. , 1984, Annual review of neuroscience.

[36]  J. Lund,et al.  Modifications of synaptic patterns in the superior colliculus of the rat during development and following deafferentation. , 1971, Vision research.

[37]  Joan Welkowitz,et al.  Introductory Statistics for the Behavioral Sciences , 1971 .

[38]  N. Booth,et al.  Veterinary Pharmacology and Therapeutics , 1885, Glasgow Medical Journal.