Dynamical Simulations of Granular Flows on Multi-Processor Computers

Particle algorithms are becoming a standard tool for the dynamical simulation of granular flows. An overview of the standard techniques is given along with a discussion of their suitability for multi-processor machines of the ve ctor or scaler type. In particular, the issues surrounding efficiency and load-balancing are discussed. Furthermore, two examples illustrating the potential uses of such simulations for ind ustrial applications are discussed: 1) simulation of granular flows through a hopper and 2) determination of diffusion constants in rotating drums.

[1]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[2]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[3]  D. C. Rapaport,et al.  Large-scale molecular dynamics simulation using vector and parallel computers , 1988 .

[4]  G. A. Kohring Studies of diffusional mixing in rotating drums via computer simulations , 1995 .

[5]  Douglas W. Fuerstenau,et al.  Diffusional mixing in an ideal system , 1966 .

[6]  Kurt Kremer,et al.  Vectorized link cell Fortran code for molecular dynamics simulations for a large number of particles , 1989 .

[7]  G. A. Kohring Computer simulations of granular materials: the effects of mesoscopic forces , 1994 .

[8]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[9]  Nobuyasu Ito,et al.  VECTORIZED AND PARALLELIZED ALGORITHMS FOR MULTI-MILLION PARTICLE MD-SIMULATION , 1993 .

[10]  G. A. Kohring,et al.  Computer simulations of critical, non-stationary granular flow through a hopper , 1995 .

[11]  Jörg Schwedes,et al.  Fließverhalten von Schüttgütern in Bunkern , 1976 .

[12]  Raymond D. Mindlin,et al.  Compliance of elastic bodies in contact , 1949 .

[13]  David M. Beazley,et al.  Message-Passing Multi-Cell Molecular Dynamics on the Connection Machine 5 , 1994, Parallel Comput..

[14]  Suresh K. Bhatia,et al.  Axial transport of granular solids in rotating cylinders. Part 2: Experiments in a non-flow system , 1991 .

[15]  K. Rietema,et al.  The Dynamics of Fine Powders , 1991 .

[16]  D. C. Rapaport,et al.  Multi-million particle molecular dynamics I. Design considerations for vector processing , 1991 .

[17]  G. Horton A Multi-Level Diffusion Method for Dynamic Load Balancing , 1993, Parallel Comput..

[18]  D. C. Rapaport,et al.  Multi-million particle molecular dynamics: II. Design considerations for distributed processing , 1991 .

[19]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  George Cybenko,et al.  Dynamic Load Balancing for Distributed Memory Multiprocessors , 1989, J. Parallel Distributed Comput..

[21]  Alok N. Choudhary,et al.  An Efficient Heuristic Scheme for Dynamic Remapping of Parallel Computations , 1993, Parallel Comput..

[22]  David Newland,et al.  Efficient computer simulation of moving granular particles , 1994 .

[23]  Gregory Allen Kohring Dynamic Load Balancing for Parallelized Particle Simulations on MIMD Computers , 1995, Parallel Comput..

[24]  Jacques E. Boillat,et al.  Load Balancing and Poisson Equation in a Graph , 1990, Concurr. Pract. Exp..

[25]  Kurt Kremer,et al.  A fast grid search algorithm for molecular dynamics simulations with short-range interactions , 1994 .

[26]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[27]  G. Kuwabara,et al.  Restitution Coefficient in a Collision between Two Spheres , 1987 .

[28]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[29]  P. C. Arnold,et al.  Prediction of the flowrate of bulk solids from mass flow bins with conical hoppers , 1992 .