Finite difference methods for ab initio electronic structure and quantum transport calculations of nanostructures

Publisher Summary This chapter discusses finite difference methods for ab initio electronic structure and quantum transport calculations of nanostructures. Among the numerical discretization methods used to solve the equations of densityfunctional theory (DFT), the most widely used are linear combination of atomic orbitals (LCAO) - usually Gaussian-type orbitals (GTO) -, plane-waves (PW) and finite differences (FD). Of these three methods, FD is the most recent and less common. It discusses the method with an application to calculations of electronic structure and conductance of carbon nano-tube on a metallic contact. It highlights ab initio Density Functional Theory models, where no parameters are fitted to experimental data. In addition, advanced numerical methods like those presented in this chapter are useful only if they allow treating real problems in solid state physics or physical chemistry. Besides the foreseen improvement in performance for calculations of large scale systems, localized orbital adapted to their chemical environment offer the possibility of novel computational applications.

[1]  J. Fattebert,et al.  Towards grid-based OÑNÖ density-functional theory methods: Optimized nonorthogonal orbitals and multigrid acceleration , 2000 .

[2]  Lang,et al.  Resistance of atomic wires. , 1995, Physical review. B, Condensed matter.

[3]  Jean-Luc Fattebert,et al.  Finite Difference Schemes and Block Rayleigh Quotient Iteration for Electronic Structure Calculations on Composite Grids , 1999 .

[4]  Jean-Luc Fattebert,et al.  Density functional theory for efficient ab initio molecular dynamics simulations in solution , 2002, J. Comput. Chem..

[5]  Marco Buongiorno Nardelli,et al.  Electronic transport in extended systems: Application to carbon nanotubes , 1999 .

[6]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[7]  Serdar Ogut,et al.  Ab Initio Excitation Spectra and Collective Electronic Response in Atoms and Clusters , 1999 .

[8]  Hideaki Takahashi,et al.  A hybrid QM/MM method employing real space grids for QM water in the TIP4P water solvents , 2001, J. Comput. Chem..

[9]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[10]  Hirose,et al.  First-principles calculation of the electronic structure for a bielectrode junction system under strong field and current. , 1995, Physical review. B, Condensed matter.

[11]  Jian Wang,et al.  Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a C 60 device , 2000, cond-mat/0007176.

[12]  M. Nardelli,et al.  MECHANISM OF STRAIN RELEASE IN CARBON NANOTUBES , 1998 .

[13]  Young-Gu Jin,et al.  Real-space electronic structure calculations of charged clusters and defects in semiconductors using a multigrid method , 1999 .

[14]  S. McCormick,et al.  A multilevel variational method for Au= Bu on composite Grids , 1989 .

[15]  S. Louie,et al.  Structural deformation and intertube conductance of crossed carbon nanotube junctions. , 2000, Physical review letters.

[16]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[17]  R. Feynman Forces in Molecules , 1939 .

[18]  Michele Parrinello,et al.  From silicon to RNA: The coming of age of ab initio molecular dynamics , 1997 .

[19]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[20]  Meir,et al.  Landauer formula for the current through an interacting electron region. , 1992, Physical review letters.

[21]  J. Ihm,et al.  Ab initio pseudopotential method for the calculation of conductance in quantum wires , 1999 .

[22]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[23]  Hernández,et al.  Self-consistent first-principles technique with linear scaling. , 1995, Physical review. B, Condensed matter.

[24]  John D. Joannopoulos,et al.  Simple scheme for surface-band calculations. II. The Green's function , 1981 .

[25]  N. Kobayashi,et al.  Conduction channels at finite bias in single-atom gold contacts , 1999 .

[26]  Christoph Strunk,et al.  Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements , 1998 .

[27]  K. Chang,et al.  Mechanism for the enhanced diffusion of charged oxygen ions in SiO2. , 2001, Physical review letters.

[28]  Baroni,et al.  Band offsets in lattice-matched heterojunctions: A model and first-principles calculations for GaAs/AlAs. , 1988, Physical review letters.

[29]  Allan,et al.  Solution of Schrödinger's equation for large systems. , 1989, Physical review. B, Condensed matter.

[30]  Bernd G. Pfrommer,et al.  Unconstrained Energy Functionals for Electronic Structure Calculations , 1998 .

[31]  L. Collatz The numerical treatment of differential equations , 1961 .

[32]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[33]  Barnett,et al.  Metal-semiconductor nanocontacts: silicon nanowires , 2000, Physical review letters.

[34]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[35]  T. Torsti,et al.  Multigrid method for electronic structure calculations , 2001, cond-mat/0101233.

[36]  K. Jacobsen,et al.  Conductance eigenchannels in nanocontacts , 1997 .

[37]  Y. Saad,et al.  Finite-difference-pseudopotential method: Electronic structure calculations without a basis. , 1994, Physical review letters.

[38]  E. Cancès,et al.  Computational quantum chemistry: A primer , 2003 .

[39]  M. Sancho,et al.  Quick iterative scheme for the calculation of transfer matrices: application to Mo (100) , 1984 .

[40]  Marco Buongiorno Nardelli,et al.  Mechanical deformations and coherent transport in carbon nanotubes , 1999 .

[41]  M. Ventra,et al.  Quantized conductance of multiwalled carbon nanotubes , 1999 .

[42]  Donald W. Brenner,et al.  Mechanical and Electrical Properties of Nanotubes , 2002 .

[43]  Daniel S. Fisher,et al.  Relation between conductivity and transmission matrix , 1981 .

[44]  C. Y. Fong,et al.  Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach , 1999, cond-mat/9903313.

[45]  Sohrab Ismail-Beigi,et al.  LOCALITY OF THE DENSITY MATRIX IN METALS, SEMICONDUCTORS, AND INSULATORS , 1999 .

[46]  J. Descloux,et al.  Rayleigh quotient iteration, an old recipe for solving modern large-scale eigenvalue problems , 1998 .

[47]  J. Fattebert A block Rayleigh quotient iteration with local quadratic convergence. , 1998 .

[48]  Wu,et al.  Ab initio molecular-dynamics simulations of Si clusters using the higher-order finite-difference-pseudopotential method. , 1994, Physical review. B, Condensed matter.

[49]  Sullivan,et al.  Large-scale electronic-structure calculations with multigrid acceleration. , 1995, Physical review. B, Condensed matter.

[50]  Scott B. Baden,et al.  Software abstractions and computational issues in parallel structured adaptive mesh methods for electronic structure calculations , 1997 .

[51]  First-principles molecular dynamics for metals. , 1989, Physical review. B, Condensed matter.

[52]  White,et al.  Finite-element method for electronic structure. , 1989, Physical review. B, Condensed matter.

[53]  T. Fujiwara,et al.  Fully-Selfconsistent Electronic-Structure Calculation Using Nonorthogonal Localized Orbitals within a Finite-Difference Real-Space Scheme and Ultrasoft Pseudopotential. , 1997 .

[54]  M. Sancho,et al.  Highly convergent schemes for the calculation of bulk and surface Green functions , 1985 .

[55]  A. Baldereschi,et al.  Mean-Value Point in the Brillouin Zone , 1973 .

[56]  N. Kobayashi,et al.  First-principles study of electron transport through monatomic Al and Na wires , 2000 .

[57]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[58]  R. Landauer Electrical resistance of disordered one-dimensional lattices , 1970 .

[59]  Jack Dongarra,et al.  ScaLAPACK user's guide , 1997 .

[60]  Davenport,et al.  Vacancies and impurities in aluminum and magnesium. , 1995, Physical review. B, Condensed matter.

[61]  Cohen,et al.  Defects, quasibound states, and quantum conductance in metallic carbon nanotubes , 2000, Physical review letters.

[62]  Efthimios Kaxiras,et al.  Adaptive coordinate, real-space electronic structure calculations on parallel computers☆ , 1996 .

[63]  Lang,et al.  First-principles calculation of transport properties of a molecular device , 2000, Physical review letters.

[64]  M. Tsukada,et al.  Electronic-structure calculations based on the finite-element method. , 1995, Physical review. B, Condensed matter.

[65]  D. Sánchez-Portal,et al.  ELECTRONIC STATES IN A FINITE CARBON NANOTUBE : A ONE-DIMENSIONAL QUANTUM BOX , 1999 .

[66]  V. Velasco,et al.  Matching methods for single and multiple interfaces: Discrete and continuous media , 1991 .

[67]  D. Ferry,et al.  Transport in nanostructures , 1999 .

[68]  Sullivan,et al.  Real-space multigrid-based approach to large-scale electronic structure calculations. , 1996, Physical review. B, Condensed matter.

[69]  A. Stathopoulos,et al.  Solution of large eigenvalue problems in electronic structure calculations , 1996 .

[70]  Anthony N. Burkitt,et al.  Computer-Simulation Methods , 1990 .

[71]  J. Bernholc,et al.  Surface sensitivity of impurity incorporation: Mg at GaN (0001) surfaces , 1999 .

[72]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[73]  Marco Buongiorno Nardelli,et al.  O(N) real-space method for ab initio quantum transport calculations: Application to carbon nanotube-metal contacts , 2001 .

[74]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[75]  M. Nardelli,et al.  Strain effects on the interface properties of nitride semiconductors , 1997 .

[76]  Vladimiro Mujica,et al.  The injecting energy at molecule/metal interfaces: Implications for conductance of molecular junctions from an ab initio molecular description , 1999 .

[77]  Gustavo E. Scuseria,et al.  Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations , 1997 .

[78]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[79]  Jian Wang,et al.  Efficient real-space solution of the Kohn–Sham equations with multiscale techniques , 1999, cond-mat/9905422.

[80]  Flavio Toigo,et al.  Real-space full-multigrid study of the fragmentation of Li + 11 clusters , 1999 .

[81]  John D. Joannopoulos,et al.  Simple scheme for surface-band calculations. I , 1981 .

[82]  Galli,et al.  Real-space adaptive-coordinate electronic-structure calculations. , 1995, Physical review. B, Condensed matter.

[83]  F. García-Moliner Theory of single and multiple interfaces , 1992 .

[84]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[85]  Galli,et al.  Large scale electronic structure calculations. , 1992, Physical review letters.

[86]  Costiner,et al.  Simultaneous multigrid techniques for nonlinear eigenvalue problems: Solutions of the nonlinear Schrödinger-Poisson eigenvalue problem in two and three dimensions. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[87]  T. Beck Real-space mesh techniques in density-functional theory , 2000, cond-mat/0006239.

[88]  M. P. Anantram,et al.  Conductance of carbon nanotubes with disorder: A numerical study , 1998 .

[89]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[90]  A three‐dimensional finite element approach towards molecular SCF computations , 1992 .

[91]  Friedhelm Bechstedt,et al.  Terrace and step contributions to the optical anisotropy of Si(001) surfaces , 2001 .

[92]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[93]  J. Ihm,et al.  Development of an energy barrier at the metal-chain-metallic-carbon-nanotube nanocontact , 1999 .

[94]  S. Datta,et al.  Coupling of Carbon Nanotubes to Metallic Contacts , 1999, cond-mat/9907357.

[95]  Quantum Transport in Semiconductor Nanostructures , 2004, cond-mat/0412664.

[96]  Michael P. Allen,et al.  Computer simulation in chemical physics , 1993 .

[97]  Alfredo Pasquarello,et al.  First-principles Molecular Dynamics , 1993 .

[98]  Jean-Luc Fattebert,et al.  An inverse iteration method using multigrid for quantum chemistry , 1996 .

[99]  Hamann Generalized norm-conserving pseudopotentials. , 1989, Physical review. B, Condensed matter.

[100]  J. Bernholc,et al.  Chemical Trends in Impurity Incorporation into Si(100) , 1998 .