Pain Control by Co-adaptive Learning in a Brain-Machine Interface

[1]  J. Farrar,et al.  The dorsal posterior insula subserves a fundamental role in human pain , 2015, Nature Neuroscience.

[2]  B. Seymour Pain: A Precision Signal for Reinforcement Learning and Control , 2019, Neuron.

[3]  T. Robbins,et al.  The control of tonic pain by active relief learning , 2017, bioRxiv.

[4]  Jimmy Ba,et al.  Dream to Control: Learning Behaviors by Latent Imagination , 2019, ICLR.

[5]  K. Jensen,et al.  Offset analgesia and onset hyperalgesia with different stimulus ranges , 2020, medRxiv.

[6]  Richard J. Davidson,et al.  Individual Differences in the Effects of Perceived Controllability on Pain Perception: Critical Role of the Prefrontal Cortex , 2007, Journal of Cognitive Neuroscience.

[7]  Edward E. Smith,et al.  Placebo-Induced Changes in fMRI in the Anticipation and Experience of Pain , 2004, Science.

[8]  R. Dolan,et al.  Uncertainty Increases Pain: Evidence for a Novel Mechanism of Pain Modulation Involving the Periaqueductal Gray , 2013, The Journal of Neuroscience.

[9]  Peng Cong,et al.  Design and Validation of a Fully Implantable, Chronic, Closed-Loop Neuromodulation Device With Concurrent Sensing and Stimulation , 2012, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[10]  P. Brown,et al.  Adaptive Deep Brain Stimulation In Advanced Parkinson Disease , 2013, Annals of neurology.

[11]  Christian Büchel,et al.  Functional dissociation of stimulus intensity encoding and predictive coding of pain in the insula , 2017, eLife.

[12]  G. Rees Statistical Parametric Mapping , 2004, Practical Neurology.

[13]  Daphna Shohamy,et al.  Representation of aversive prediction errors in the human periaqueductal gray , 2014, Nature Neuroscience.

[14]  A I Basbaum,et al.  Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. , 1984, Annual review of neuroscience.

[15]  Takeo Watanabe,et al.  Perceptual Learning Incepted by Decoded fMRI Neurofeedback Without Stimulus Presentation , 2011, Science.

[16]  Joachim M. Buhmann,et al.  Decoding the perception of pain from fMRI using multivariate pattern analysis , 2012, NeuroImage.

[17]  Olivia K. Faull,et al.  Connectivity‐based segmentation of the periaqueductal gray matter in human with brainstem optimized diffusion MRI , 2015, Human brain mapping.

[18]  T. Robbins,et al.  Dissociable Learning Processes Underlie Human Pain Conditioning , 2016, Current Biology.

[19]  B. Seymour,et al.  Technology for Chronic Pain , 2014, Current Biology.

[20]  Kevin B. Bennett,et al.  Self-directed down-regulation of auditory cortex activity mediated by real-time fMRI neurofeedback augments attentional processes, resting cerebral perfusion, and auditory activation , 2019, NeuroImage.

[21]  Martin A Lindquist,et al.  Quantifying cerebral contributions to pain beyond nociception , 2017, Nature Communications.

[22]  B. Seymour,et al.  Fear reduction without fear through reinforcement of neural activity that bypasses conscious exposure , 2016, Nature Human Behaviour.

[23]  Felice T. Sun,et al.  Closed-loop Neurostimulation: The Clinical Experience , 2014, Neurotherapeutics.

[24]  Christian Büchel,et al.  Evidence for a spinal involvement in temporal pain contrast enhancement , 2018, NeuroImage.

[25]  R. Lanius,et al.  The neurobiology of emotion regulation in posttraumatic stress disorder: Amygdala downregulation via real‐time fMRI neurofeedback , 2017, Human brain mapping.

[26]  Susanne Becker,et al.  Different Brain Circuitries Mediating Controllable and Uncontrollable Pain , 2016, The Journal of Neuroscience.

[27]  S. Clare,et al.  Imaging how attention modulates pain in humans using functional MRI. , 2002, Brain : a journal of neurology.

[28]  Thomas E. Nichols,et al.  Can parametric statistical methods be trusted for fMRI based group studies? , 2015, 1511.01863.

[29]  Guillaume Gibert,et al.  OpenViBE: An Open-Source Software Platform to Design, Test, and Use BrainComputer Interfaces in Real and Virtual Environments , 2010, PRESENCE: Teleoperators and Virtual Environments.

[30]  Florent Meyniel,et al.  Human Inferences about Sequences: A Minimal Transition Probability Model , 2016, bioRxiv.

[31]  T. Szikszay,et al.  The Magnitude of Offset Analgesia as a Measure of Endogenous Pain Modulation in Healthy Participants and Patients With Chronic Pain: A Systematic Review and Meta-Analysis , 2019, The Clinical journal of pain.

[32]  S. Debener,et al.  Trial-by-Trial Fluctuations in the Event-Related Electroencephalogram Reflect Dynamic Changes in the Degree of Surprise , 2008, The Journal of Neuroscience.

[33]  Janaina Mourão Miranda,et al.  Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes , 2010, NeuroImage.

[34]  M. Lindquist,et al.  An fMRI-based neurologic signature of physical pain. , 2013, The New England journal of medicine.

[35]  Mitsuo Kawato,et al.  A Fully-Implantable Wireless System for Human Brain-Machine Interfaces Using Brain Surface Electrodes: W-HERBS , 2011, IEICE Trans. Commun..

[36]  A. Craig How do you feel? Interoception: the sense of the physiological condition of the body , 2002, Nature Reviews Neuroscience.

[37]  Timothy E. J. Behrens,et al.  Learning the value of information in an uncertain world , 2007, Nature Neuroscience.

[38]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[39]  Rainer Goebel,et al.  Information-based functional brain mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Luke J. Chang,et al.  Learned expectations and uncertainty facilitate pain during classical conditioning , 2017, Pain.

[41]  Till Sprenger,et al.  Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain—an fMRI analysis , 2004, Pain.

[42]  Robert C. Coghill,et al.  Offset analgesia: A temporal contrast mechanism for nociceptive information , 2008, Pain.

[43]  S. Kakade,et al.  Learning and selective attention , 2000, Nature Neuroscience.

[44]  Prasad Shirvalkar,et al.  Closed-Loop Deep Brain Stimulation for Refractory Chronic Pain , 2018, Front. Comput. Neurosci..

[45]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[46]  Richard J. Davidson,et al.  Neural Emotion Regulation Circuitry Underlying Anxiolytic Effects of Perceived Control over Pain , 2014, Journal of Cognitive Neuroscience.

[47]  Dimitri Van De Ville,et al.  Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated? , 2016, NeuroImage.

[48]  M. Kawato,et al.  Multivoxel neurofeedback selectively modulates confidence without changing perceptual performance , 2016, Nature Communications.

[49]  Stuart W. G. Derbyshire,et al.  Offset analgesia is mediated by activation in the region of the periaqueductal grey and rostral ventromedial medulla , 2009, NeuroImage.

[50]  David Yarnitsky,et al.  Studies of heat pain sensation in man: perception thresholds, rate of stimulus rise and reaction time , 1990, Pain.

[51]  Raphael Vallat,et al.  Pingouin: statistics in Python , 2018, J. Open Source Softw..

[52]  C. Büchel,et al.  Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network , 2006, Pain.

[53]  José Carlos Príncipe,et al.  Coadaptive Brain–Machine Interface via Reinforcement Learning , 2009, IEEE Transactions on Biomedical Engineering.

[54]  Dante R Chialvo,et al.  Dynamics of pain: fractal dimension of temporal variability of spontaneous pain differentiates between pain States. , 2006, Journal of neurophysiology.

[55]  Florent Meyniel,et al.  Brain signatures of a multiscale process of sequence learning in humans , 2019, eLife.

[56]  C. Büchel,et al.  Activation of the Opioidergic Descending Pain Control System Underlies Placebo Analgesia , 2009, Neuron.

[57]  T. Wager,et al.  Distinct Brain Systems Mediate the Effects of Nociceptive Input and Self-Regulation on Pain , 2015, PLoS biology.

[58]  Luke J. Chang,et al.  Building better biomarkers: brain models in translational neuroimaging , 2017, Nature Neuroscience.

[59]  Michael Eickenberg,et al.  Machine learning for neuroimaging with scikit-learn , 2014, Front. Neuroinform..

[60]  Nicole C. Swann,et al.  Gamma Oscillations in the Hyperkinetic State Detected with Chronic Human Brain Recordings in Parkinson's Disease , 2016, Journal of Neuroscience.

[61]  Martin N. Hebart,et al.  The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data , 2015, Front. Neuroinform..

[62]  Sergey Levine,et al.  One-Shot Imitation from Observing Humans via Domain-Adaptive Meta-Learning , 2018, Robotics: Science and Systems.

[63]  Masa-aki Sato,et al.  Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns , 2008, NeuroImage.