A Spatio-Temporal Entropy-based Framework for the Detection of Trajectories Similarity

The rapid proliferation of sensors and big data repositories offer many new opportunities for data science. Among many application domains, the analysis of large trajectory datasets generated from people’s movements at the city scale is one of the most promising research avenues still to explore. Extracting trajectory patterns and outliers in urban environments is a direction still requiring exploration for many management and planning tasks. The research developed in this paper introduces a spatio-temporal framework, so-called STE-SD (Spatio-Temporal Entropy for Similarity Detection), based on the initial concept of entropy as introduced by Shannon in his seminal theory of information and as recently extended to the spatial and temporal dimensions. Our approach considers several complementary trajectory descriptors whose distribution in space and time are quantitatively evaluated. The trajectory primitives considered include curvatures, stop-points, self-intersections and velocities. These primitives are identified and then qualified using the notion of entropy as applied to the spatial and temporal dimensions. The whole approach is experimented and applied to urban trajectories derived from the Geolife dataset, a reference data benchmark available in the city of Beijing.

[1]  Xing Xie,et al.  Understanding transportation modes based on GPS data for web applications , 2010, TWEB.

[2]  Xiaoru Yuan,et al.  OD-Wheel: Visual design to explore OD patterns of a central region , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[3]  Carlo Ratti,et al.  Estimating Origin-Destination flows using opportunistically collected mobile phone location data from one million users in Boston Metropolitan Area , 2011 .

[4]  Jukka Riekki,et al.  Urban traffic analysis through multi-modal sensing , 2015, Personal and Ubiquitous Computing.

[5]  Jure Leskovec,et al.  Friendship and mobility: user movement in location-based social networks , 2011, KDD.

[6]  Anna Monreale,et al.  WhereNext: a location predictor on trajectory pattern mining , 2009, KDD.

[7]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[8]  R. Chapleau,et al.  Modeling Transit Travel Patterns from Location-Stamped Smart Card Data Using a Disaggregate Approach , 2007 .

[9]  Yinhai Wang,et al.  Uncovering urban human mobility from large scale taxi GPS data , 2015 .

[10]  Nikos Mamoulis,et al.  Discovery of Periodic Patterns in Spatiotemporal Sequences , 2007, IEEE Transactions on Knowledge and Data Engineering.

[11]  Kazutoshi Sumiya,et al.  Exploring urban characteristics using movement history of mass mobile microbloggers , 2010, HotMobile '10.

[12]  Jae-Gil Lee,et al.  TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering , 2008, Proc. VLDB Endow..

[13]  Luca Pappalardo,et al.  Data-driven generation of spatio-temporal routines in human mobility , 2016, Data Mining and Knowledge Discovery.

[14]  Nikos Mamoulis,et al.  Mining frequent spatio-temporal sequential patterns , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[15]  David Brosset,et al.  International Journal of Geographical Information Science Local and Global Spatio-temporal Entropy Indices Based on Distance- Ratios and Co-occurrences Distributions Local and Global Spatio-temporal Entropy Indices Based on Distance-ratios and Co-occurrences Distributions , 2022 .

[16]  Song Gao,et al.  Discovering Spatial Interaction Communities from Mobile Phone Data , 2013 .

[17]  Martin Raubal,et al.  Measuring similarity of mobile phone user trajectories– a Spatio-temporal Edit Distance method , 2014, Int. J. Geogr. Inf. Sci..

[18]  Robert Weibel,et al.  Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects , 2009, Comput. Environ. Urban Syst..

[19]  Tian Lan,et al.  Zooming into individuals to understand the collective: A review of trajectory-based travel behaviour studies , 2014 .

[20]  Bettina Speckmann,et al.  Analysis and visualisation of movement: an interdisciplinary review , 2015, Movement Ecology.

[21]  Thinn Thu Naing,et al.  MINING DATA FOR TRAFFIC DETECTION SYSTEM USING GPS_ ENABLE MOBILE PHONE IN MOBILE CLOUD INFRASTRUCTURE , 2014, CloudCom 2014.

[22]  Catherine Morency,et al.  Smart card data use in public transit: A literature review , 2011 .

[23]  Mikolaj Morzy,et al.  Mining Frequent Trajectories of Moving Objects for Location Prediction , 2007, MLDM.

[24]  Tomoki Nakaya,et al.  Network-based spatial interpolation of commuting trajectories: application of a university commuting management project in Kyoto, Japan , 2014 .

[25]  Jiawei Han,et al.  Efficient mining of partial periodic patterns in time series database , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[26]  Fabian J. Theis,et al.  Money Circulation, Trackable Items, and the Emergence of Universal Human Mobility Patterns , 2008, IEEE Pervasive Computing.

[27]  Wen-Jing Hsu,et al.  Predictability of individuals' mobility with high-resolution positioning data , 2012, UbiComp.

[28]  Zbigniew Smoreda,et al.  An analytical framework to nowcast well-being using mobile phone data , 2016, International Journal of Data Science and Analytics.

[29]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[30]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[31]  Dino Pedreschi,et al.  Mobility, Data Mining and Privacy - Geographic Knowledge Discovery , 2008, Mobility, Data Mining and Privacy.

[32]  Dino Pedreschi,et al.  Time-focused clustering of trajectories of moving objects , 2006, Journal of Intelligent Information Systems.

[33]  Alireza Chehreghan,et al.  An assessment of spatial similarity degree between polylines on multi-scale, multi-source maps , 2017 .

[34]  Nikos Pelekis,et al.  Clustering Trajectories of Moving Objects in an Uncertain World , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[35]  Bruno Agard,et al.  Analysing the Variability of Transit Users Behaviour with Smart Card Data , 2006, 2006 IEEE Intelligent Transportation Systems Conference.

[36]  Xianfeng Huang,et al.  Using smart card data to extract passenger's spatio-temporal density and train's trajectory of MRT system , 2012, UrbComp '12.

[37]  Yu Zheng,et al.  Trajectory Data Mining , 2015, ACM Trans. Intell. Syst. Technol..

[38]  A. Pentland,et al.  Eigenbehaviors: identifying structure in routine , 2009, Behavioral Ecology and Sociobiology.

[39]  Simon P. Wilson,et al.  Automated Identification of Linked Trips at Trip Level Using Electronic Fare Collection Data , 2009 .

[40]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[41]  Daniel Gatica-Perez,et al.  Contextual conditional models for smartphone-based human mobility prediction , 2012, UbiComp.

[42]  Jian Yang,et al.  Exploring spatiotemporal characteristics of intra-urban trips using metro smartcard records , 2012, 2012 20th International Conference on Geoinformatics.

[43]  Ya Tian,et al.  Large-scale taxi O/D visual analytics for understanding metropolitan human movement patterns , 2015, J. Vis..

[44]  Hui Fang,et al.  Mining User Position Log for Construction of Personalized Activity Map , 2009, ADMA.

[45]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.

[46]  Peter Widhalm,et al.  Discovering urban activity patterns in cell phone data , 2015, Transportation.

[47]  Christophe Claramunt,et al.  A Dempster-Shafer based approach to the detection of trajectory stop points , 2018, Comput. Environ. Urban Syst..

[48]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[49]  Jae-Gil Lee,et al.  Mining Discriminative Patterns for Classifying Trajectories on Road Networks , 2011, IEEE Transactions on Knowledge and Data Engineering.

[50]  Bettina Speckmann,et al.  Context-Aware Similarity of Trajectories , 2012, GIScience.

[51]  Christophe Claramunt,et al.  Towards a Spatio-temporal Form of Entropy , 2012, ER Workshops.

[52]  Christophe Claramunt,et al.  A Geometric Framework for Detection of Critical Points in a Trajectory Using Convex Hulls , 2018, ISPRS Int. J. Geo Inf..

[53]  Carlo Ratti,et al.  The Geography of Taste: Analyzing Cell-Phone Mobility and Social Events , 2010, Pervasive.

[54]  Jon M. Kleinberg,et al.  Mapping the world's photos , 2009, WWW '09.

[55]  Carlo Ratti,et al.  Mobile Landscapes: Using Location Data from Cell Phones for Urban Analysis , 2006 .

[56]  Yasuo Asakura,et al.  TRACKING SURVEY FOR INDIVIDUAL TRAVEL BEHAVIOUR USING MOBILE COMMUNICATION INSTRUMENTS , 2004 .

[57]  Robert Weibel,et al.  Integrating cross-scale analysis in the spatial and temporal domains for classification of behavioral movement , 2014, J. Spatial Inf. Sci..

[58]  P. Laube,et al.  Trajectory Similarity Analysis in Movement Parameter Space , 2011 .

[59]  J. Reynolds,et al.  A new contagion index to quantify spatial patterns of landscapes , 1993, Landscape Ecology.

[60]  Qingquan Li,et al.  Functionally critical locations in an urban transportation network: Identification and space-time analysis using taxi trajectories , 2015, Comput. Environ. Urban Syst..

[61]  Liang Liu,et al.  Estimating Origin-Destination Flows Using Mobile Phone Location Data , 2011, IEEE Pervasive Computing.

[62]  Fabrice Rossi,et al.  Graph-Based Approaches to Clustering Network-Constrained Trajectory Data , 2012, NFMCP.

[63]  Bin Ran,et al.  Daily O-D Matrix Estimation using Cellular Probe Data , 2010 .

[64]  Wen-Jing Hsu,et al.  Mining GPS data for mobility patterns: A survey , 2014, Pervasive Mob. Comput..

[65]  Mikko Alava,et al.  Patterns, Entropy, and Predictability of Human Mobility and Life , 2012, PloS one.