On packing spheres into containers (about Kepler's finite sphere packing problem)

In an Euclidean $d$-space, the container problem asks to pack $n$ equally sized spheres into a minimal dilate of a fixed container. If the container is a smooth convex body and $d\geq 2$ we show that solutions to the container problem can not have a ``simple structure'' for large $n$. By this we in particular find that there exist arbitrary small $r>0$, such that packings in a smooth, 3-dimensional convex body, with a maximum number of spheres of radius $r$, are necessarily not hexagonal close packings. This contradicts Kepler's famous statement that the cubic or hexagonal close packing ``will be the tightest possible, so that in no other arrangement more spheres could be packed into the same container''.

[1]  F. Thorne,et al.  Geometry of Numbers , 2017, Algebraic Number Theory.

[2]  Hans Zassenhaus,et al.  Local optimality of the critical lattice sphere-packing of regular tetrahedra , 1987, Discret. Math..

[3]  P. Gruber,et al.  Ausfüllung und Überdeckung konvexer Körper durch konvexe Körper , 1990 .

[4]  Kenneth Falconer,et al.  Unsolved Problems In Geometry , 1991 .

[5]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[6]  Peter Gritzmann,et al.  Finite Packing and Covering , 1993 .

[7]  G. Ziegler Lectures on Polytopes , 1994 .

[8]  M. Henk,et al.  Finite and infinite packings. , 1994 .

[9]  N. J. A. Sloane,et al.  What are all the best sphere packings in low dimensions? , 1995, Discret. Comput. Geom..

[10]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[11]  Ronald L. Graham,et al.  Curved Hexagonal Packings of Equal Disks in a Circle , 1997, Discret. Comput. Geom..

[12]  Thomas C. Hales,et al.  An overview of the Kepler conjecture , 1998 .

[13]  Patric R. J. Östergård,et al.  More Optimal Packings of Equal Circles in a Square , 1999, Discret. Comput. Geom..

[14]  F. Fodor The Densest Packing of 19 Congruent Circles in a Circle , 1999 .

[15]  Jeffrey C. Lagarias,et al.  Bounds for Local Density of Sphere Packings and the Kepler Conjecture , 2000, Discret. Comput. Geom..

[16]  Achill Schürmann,et al.  On Extremal Finite Packings , 2002, Discret. Comput. Geom..

[17]  W. Hsiang Least Action Principle of Crystal Formation of Dense Packing Type and Kepler's Conjecture , 2002 .

[18]  George G. Szpiro,et al.  Mathematics: Does the proof stack up? , 2003, Nature.

[19]  F. Stillinger,et al.  Jamming in hard sphere and disk packings , 2004 .

[20]  T. Hales The Kepler conjecture , 1998, math/9811078.

[21]  Tibor Csendes,et al.  New Approaches to Circle Packing in a Square - With Program Codes , 2007, Optimization and its applications.