Plant biology and pathology / Biologie et pathologie végétales Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants ✩ ,✩✩

[1]  J. Ralph,et al.  Severe inhibition of maize wall degradation by synthetic lignins formed with coniferaldehyde , 1998 .

[2]  T. Lam,et al.  Lignin and Hydroxycinnamic Acids in Walls of Brown Midrib Mutants of Sorghum, Pearl Millet and Maize Stems , 1996 .

[3]  T. Umezawa,et al.  Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Leplé,et al.  Identification of the Structure and Origin of Thioacidolysis Marker Compounds for Cinnamyl Alcohol Dehydrogenase Deficiency in Angiosperms* 210 , 2002, The Journal of Biological Chemistry.

[5]  D. Inzé,et al.  Red Xylem and Higher Lignin Extractability by Down-Regulating a Cinnamyl Alcohol Dehydrogenase in Poplar , 1996, Plant physiology.

[6]  J. Grima-Pettenati,et al.  A novel aromatic alcohol dehydrogenase in higher plants: molecular cloning and expression , 1998, Plant Molecular Biology.

[7]  Y. Barrière,et al.  Relationship of cell wall composition to in vitro cell wall digestibility of maize inbred line stems , 2000 .

[8]  J. Grima-Pettenati,et al.  Purification and characterization of isoforms of cinnamyl alcohol dehydrogenase from Eucalyptus xylem , 1992, Planta.

[9]  J. Leplé,et al.  Signatures of cinnamyl alcohol dehydrogenase deficiency in poplar lignins. , 2004, Phytochemistry.

[10]  Bernard Fritig,et al.  Altered lignin composition in transgenic tobacco expressing O-methyltransferase sequences in sense and antisense orientation , 1995 .

[11]  J. Kuc,et al.  THE ABNORMAL LIGNINS PRODUCED BY THE BROWN-MIDRIB MUTANTS OF MAIZE. I. THE BROWN-MIDRIB-1 MUTANT. , 1964, Archives of biochemistry and biophysics.

[12]  R. Dixon,et al.  Chemical syntheses of caffeoyl and 5-OH coniferyl aldehydes and alcohols and determination of lignin O-methyltransferase activities in dicot and monocot species. , 2001, Phytochemistry.

[13]  D. Buxton,et al.  Apparent inhibition to digestion by lignin in normal and brown midrib stems , 1992 .

[14]  R. Dixon,et al.  The biosynthesis of monolignols: a "metabolic grid", or independent pathways to guaiacyl and syringyl units? , 2001, Phytochemistry.

[15]  Pollet,et al.  Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping , 1999, Plant physiology.

[16]  John Ralph,et al.  Plant biology and pathology / Biologie et pathologie végétales Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions ✩ , 2004 .

[17]  M. R. Hemm,et al.  Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. , 2002, The Plant journal : for cell and molecular biology.

[18]  Zengyu Wang,et al.  Lignin deposition and associated changes in anatomy, enzyme activity, gene expression, and ruminal degradability in stems of tall fescue at different developmental stages. , 2002, Journal of agricultural and food chemistry.

[19]  Y. Barrière,et al.  Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. A review , 2003 .

[20]  Leonzio Rizzo,et al.  N , 1857, Notions d'histoire de la traduction.

[21]  S. Fry,et al.  Intraprotoplasmic and wall-localised formation of arabinoxylan-bound diferulates and larger ferulate coupling-products in maize cell-suspension cultures , 2000, Planta.

[22]  Michael D. McMullen,et al.  Quantitative Trait Locus Analysis of Stalk Strength in Four Maize Populations , 2003, Crop Science.

[23]  L. D. Muller,et al.  In Vitro dry Matter Disappearance of Brown Midrib Mutants of Maize (Zea Mays L.)1 , 1971 .

[24]  H. Scheller,et al.  Intracellular feruloylation of arabinoxylan in wheat: evidence for feruloyl-glucose as precursor , 2003, Planta.

[25]  L. Jouanin,et al.  Expression Pattern of Two Paralogs Encoding Cinnamyl Alcohol Dehydrogenases in Arabidopsis. Isolation and Characterization of the Corresponding Mutants1 , 2003, Plant Physiology.

[26]  T. Higuchi Pathways for monolignol biosynthesis via metabolic grids: coniferyl aldehyde 5-hydroxylase, a possible key enzyme in angiosperm syringyl lignin biosynthesis , 2003 .

[27]  R. Sederoff,et al.  Abnormal lignin in a loblolly pine mutant. , 1997, Science.

[28]  John Ralph,et al.  Variations in the cell wall composition of maize brown midrib mutants. , 2003, Journal of agricultural and food chemistry.

[29]  W. Vermerris,et al.  Tissue-specific patterns of lignification are disturbed in the brown midrib2 mutant of maize (Zea mays L.). , 2001, Journal of agricultural and food chemistry.

[30]  Y. Barrière,et al.  Down-Regulation of Caffeic Acid O-Methyltransferase in Maize Revisited Using a Transgenic Approach1 , 2002, Plant Physiology.

[31]  C. Migné,et al.  Immunocytochemical localisation of para-coumaric acid and feruloyl-arabinose in the cell walls of maize stem , 1998 .

[32]  Y. Barrière,et al.  Brown-midrib genes of maize: a review , 1993 .

[33]  D. Shibata,et al.  Red-brown color of lignified tissues of transgenic plants with antisense CAD gene : wine-red lignin from coniferyl aldehyde , 1994 .

[34]  G. Spangenberg,et al.  cDNA cloning and differential expression of three caffeic acid O-methyltransferase homologues from perennial ryegrass (Lolium perenne) , 1998 .

[35]  T. Lam,et al.  Caffeic acid : O-methyltransferases and the biosynthesis of ferulic acid in primary cell walls of wheat seedlings , 1996 .

[36]  S. Bout,et al.  A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase , 2003, Molecular Genetics and Genomics.

[37]  S. Yoshida,et al.  Enzymic feruloylation of arabinoxylan-trisaccharide by feruloyl-CoA:arabinoxylan-trisaccharide O-hydroxycinnamoyl transferase from Oryza sativa , 2001, Planta.

[38]  John Ralph,et al.  NMR Evidence for Benzodioxane Structures Resulting from Incorporation of 5-Hydroxyconiferyl Alcohol into Lignins of O-Methyltransferase-Deficient Poplars , 2001 .

[39]  J. Ralph,et al.  Cross-coupling of hydroxycinnamyl aldehydes into lignins. , 2000, Organic letters.

[40]  P. Mascia,et al.  Molecular characterization of a brown midrib3 deletion mutation in maize , 1997, Molecular Breeding.

[41]  G. Spangenberg,et al.  Isolation and characterisation of three cinnamyl alcohol dehydrogenase homologue cDNAs from perennial ryegrass (Lolium perenne L.) , 2002 .

[42]  Richard A Dixon,et al.  Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. , 2003, Plant biotechnology journal.

[43]  Richard F. Helm,et al.  Pathway of p-Coumaric Acid Incorporation into Maize Lignin As Revealed by NMR , 1994 .

[44]  A. Chesson,et al.  Characterisation of Lignin from CAD and OMT Deficient Bm Mutants of Maize , 1997 .

[45]  Yuriko Osakabe,et al.  Secondary xylem-specific expression of caffeoyl-coenzyme A 3-O-methyltransferase plays an important role in the methylation pathway associated with lignin biosynthesis in loblolly pine , 1999, Plant Molecular Biology.

[46]  S. Maury,et al.  cDNA cloning, substrate specificity and expression study of tobacco caffeoyl-CoA 3-O-methyltransferase, a lignin biosynthetic enzyme , 1998, Plant Molecular Biology.

[47]  Y. Barrière,et al.  Genetic variation and QTL mapping of para-coumaric and ferulic acid contents in maize stover at silage harvest [Zea mays L. - France] , 2003 .

[48]  J. Ralph,et al.  Cross-linking of maize walls by ferulate dimerization and incorporation into lignin. , 2000, Journal of agricultural and food chemistry.

[49]  J. Watson,et al.  Sequence and expression of a stem-abundant caffeic acid O-methyltransferase cDNA from perennial ryegrass (Lolium perenne) , 1998 .

[50]  W. Boerjan,et al.  Lignin biosynthesis. , 2003, Annual review of plant biology.

[51]  M. Morant,et al.  CYP98A3 from Arabidopsis thaliana Is a 3′-Hydroxylase of Phenolic Esters, a Missing Link in the Phenylpropanoid Pathway* , 2001, The Journal of Biological Chemistry.

[52]  V. L. Lechtenberg,et al.  Phenotype, Fiber Composition, and in vitro Dry Matter Disappearance of Chemically Induced Brown Midrib (bmr) Mutants of Sorghum 1 , 1978 .

[53]  R. Dixon,et al.  Substrate preferences of O-methyltransferases in alfalfa suggest new pathways for 3-O-methylation of monolignols. , 2008, The Plant journal : for cell and molecular biology.

[54]  N. Lewis,et al.  Trends in Lignin Modification: A Comprehensive Analysis of the Effects of Genetic Manipulations/Mutations on Lignification and Vascular Integrity , 2003 .

[55]  T. Umezawa,et al.  The Last Step of Syringyl Monolignol Biosynthesis in Angiosperms Is Regulated by a Novel Gene Encoding Sinapyl Alcohol Dehydrogenase , 2001, The Plant Cell Online.

[56]  A. Boudet,et al.  Comparison of lignins and of enzymes involved in lignification in normal and brown midrib (bm3) mutant corn seedlings , 1985 .

[57]  L. R. Jorgenson Brown Midrib in Maize and its Linkage relations , 1931 .

[58]  N. Lewis,et al.  Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. , 2002, Phytochemistry.

[59]  D. Buxton,et al.  Forage Cell Wall Structure and Digestibility , 1993 .

[60]  E. Kellogg,et al.  Evolutionary history of the grasses. , 2001, Plant physiology.

[61]  R. Zhong,et al.  Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants. , 2000, Plant physiology.

[62]  Jerrold I. Davis,et al.  Phylogeny and subfamilial classification of the grasses (Poaceae) , 2001 .

[63]  A. Chesson,et al.  Biotechnology in animal feeds and animal feeding. , 1995 .

[64]  R. Sederoff,et al.  Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[65]  R. Sederoff,et al.  Lignin structure in a mutant pine deficient in cinnamyl alcohol dehydrogenase. , 2000, Journal of agricultural and food chemistry.

[66]  W. Campbell,et al.  Substrate profiles and expression of caffeoyl coenzyme A and caffeic acid O-methyltransferases in secondary xylem of aspen during seasonal development , 1998, Plant Molecular Biology.

[67]  S. Danoun,et al.  Laccase Down-Regulation Causes Alterations in Phenolic Metabolism and Cell Wall Structure in Poplar1 , 2002, Plant Physiology.

[68]  T. Umezawa,et al.  5-Hydroxyconiferyl Aldehyde Modulates Enzymatic Methylation for Syringyl Monolignol Formation, a New View of Monolignol Biosynthesis in Angiosperms* , 2000, The Journal of Biological Chemistry.

[69]  A. Boudet Lignins and lignification: Selected issues , 2000 .

[70]  M. R. Hemm,et al.  New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[71]  R. Helm,et al.  Lignin/Hydroxycinnamic Acid/Polysaccharide Complexes: Synthetic Models for Regiochemical Characterization , 1993 .

[72]  K. Edwards,et al.  Brown-midrib maize (bm1)--a mutation affecting the cinnamyl alcohol dehydrogenase gene. , 1998, The Plant journal : for cell and molecular biology.

[73]  Fang Chen,et al.  Evidence for a novel biosynthetic pathway that regulates the ratio of syringyl to guaiacyl residues in lignin in the differentiating xylem of Magnolia kobus DC , 1999, Planta.

[74]  Y. Barrière,et al.  A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters , 2003, Plant Molecular Biology.

[75]  R. A. Brink,et al.  Linkage Relations of a Second Brown Midrib Gene (bm2) in Maize 1 , 1932 .

[76]  B. Chabbert,et al.  Biological variability in lignification of maize: Expression of the brown midrib bm2 mutation , 1994 .

[77]  B. Larkins,et al.  A Defective Signal Peptide Tethers the floury-2 Zein to the Endoplasmic Reticulum Membrane , 1997, Plant physiology.

[78]  K. Osakabe,et al.  A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Fang Chen,et al.  Structural conversion of the lignin subunit at the cinnamyl alcohol stage in Eucalyptus camaldulensis , 1999, Journal of Wood Science.

[80]  S. Hawkins,et al.  Purification and Characterization of Cinnamyl Alcohol Dehydrogenase Isoforms from the Periderm of Eucalyptus gunnii Hook , 1994, Plant physiology.

[81]  M. Van Montagu,et al.  Cell-specific and conditional expression of caffeoyl-coenzyme A-3-O-methyltransferase in poplar. , 2000, Plant physiology.

[82]  B. Chabbert,et al.  Breeding silage maize with brown-midrib genes. Feeding value and biochemical characteristics , 1994 .

[83]  J. Ralph,et al.  p-coumaroylated syringyl units in maize lignin: Implications for β-ether cleavage by thioacidolysis , 1996 .

[84]  John Ralph,et al.  NMR analysis of lignins in CAD-deficient plants. Part 1. Incorporation of hydroxycinnamaldehydes and hydroxybenzaldehydes into lignins. , 2003, Organic & biomolecular chemistry.

[85]  F. Vignols,et al.  The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. , 1995, The Plant cell.

[86]  J. Cherney,et al.  Potential of Brown-Midrib, Low-Lignin Mutants for Improving Forage Quality , 1991 .

[87]  R. Helm,et al.  Cell Wall Cross-Linking in Grasses by Ferulates and Diferulates , 1998 .

[88]  B. Gaut,et al.  DNA sequence evidence for the segmental allotetraploid origin of maize. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[89]  C. Chapple,et al.  The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 Gene Encodes an Aldehyde Dehydrogenase Involved in Ferulic Acid and Sinapic Acid Biosynthesis , 2004, The Plant Cell Online.

[90]  G. Jacquet Structure et réactivité des lignines de graminées et des acides phénoliques associés : développement des méthodologies d'investigation , 1997 .

[91]  Peter Gluchowski,et al.  F , 1934, The Herodotus Encyclopedia.

[92]  C. Chapple,et al.  Rewriting the lignin roadmap. , 2002, Current opinion in plant biology.

[93]  W. Boerjan,et al.  NMR evidence for benzodioxane structures resulting from incorporation of 5-hydroxyconiferyl alcohol into Lignins of O-methyltransferase-deficient poplars. , 2001, Journal of agricultural and food chemistry.

[94]  Brigitte Chabbert,et al.  Biological variability in lignification of maize: Expression of the brown midrib bm3 mutation in three maize cultivars , 1994 .

[95]  J. Cherney,et al.  Forage Quality Characterization of a Chemically Induced Brown-Midrib Mutant in Pearl Millet , 1988 .

[96]  Virginie Lauvergeat L'alcool cinnamylique déshydrogénase d'Eucalyptus gunnii : caractérisation moléculaire de la protéine et analyse fonctionnelle du promoteur , 1997 .

[97]  M Pean,et al.  Elucidation of new structures in lignins of CAD- and COMT-deficient plants by NMR. , 2001, Phytochemistry.

[98]  Michael A. Costa,et al.  An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof. , 2003, Phytochemistry.

[99]  C. Chapple,et al.  The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. , 2002, The Plant journal : for cell and molecular biology.

[100]  J. Ralph,et al.  Ferulate Cross-Links Limit the Enzymatic Degradation of Synthetically Lignified Primary Walls of Maize , 1998 .

[101]  Oliver Bendel [E] , 1896, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[102]  S. Mccouch,et al.  Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. , 1999, Genetics.

[103]  J. Ralph,et al.  Detection and determination of p-coumaroylated units in lignins. , 1999, Journal of agricultural and food chemistry.

[104]  W. Boerjan,et al.  NMR characterization of lignins from transgenic poplars with suppressed caffeic acid O-methyltransferase activity , 2001 .

[105]  K. Ruel,et al.  Study of Lignification by Noninvasive Techniques in Growing Maize Internodes (An Investigation by Fourier Transform Infrared Cross-Polarization-Magic Angle Spinning 13C-Nuclear Magnetic Resonance Spectroscopy and Immunocytochemical Transmission Electron Microscopy) , 1997, Plant physiology.

[106]  L. Jouanin,et al.  Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana , 2003 .

[107]  Y. Barrière,et al.  Genetic variation and QTL mapping of para-coumaric and ferulic acid contents in maize stover at silage harvest , 2003 .

[108]  Ronald D. Hatfield,et al.  Ferulate cross-linking in cell walls isolated from maize cell suspensions , 1995 .

[109]  J. Grima-Pettenati,et al.  Site-directed mutagenesis of a serine residue in cinnamyl alcohol dehydrogenase, a plant NADPH-dependent dehydrogenase, affects the specificity for the coenzyme. , 1995, Biochemistry.