Descriptional Complexity of (Un)ambiguous Finite State Machines and Pushdown Automata

Unambiguity and its generalization to quantified ambiguity are important concepts in, e.g., automata and complexity theory. Basically, an unambiguous machine has at most one accepting computation path for each accepted word. While unambiguous pushdown automata induce a language family strictly in between the deterministic and general context-free languages, unambiguous finite automata capture the regular languages, that is, they are equally powerful as deterministic and nondeterministic finite automata. However, their descriptional capacity is significantly different. In the present paper, we summarize and discuss developments relevant to (un)ambiguous finite automata and pushdown automata problems from the descriptional complexity point of view. We do not prove these results but we merely draw attention to the big picture and some of the main ideas involved.

[1]  Martin Kutrib,et al.  Descriptional Complexity - An Introductory Survey , 2010, Scientific Applications of Language Methods.

[2]  Paulo A. S. Veloso,et al.  Some Remarks on Multiple-Entry Finite Automata , 1979, J. Comput. Syst. Sci..

[3]  Tao Jiang,et al.  The Structure and Complexity of Minimal NFA's over a Unary Alphabet , 1991, Int. J. Found. Comput. Sci..

[4]  Jonathan Goldstine,et al.  Measuring nondeterminism in pushdown automata , 2005, J. Comput. Syst. Sci..

[5]  Helmut Seidl,et al.  On the Degree of Ambiguity of Finite Automata , 1991, Theor. Comput. Sci..

[6]  E. Mark Gold,et al.  Complexity of Automaton Identification from Given Data , 1978, Inf. Control..

[7]  Grzegorz Rozenberg,et al.  Developments in Language Theory II , 2002 .

[8]  Wojciech Rytter,et al.  On the Maximal Number of Cubic Runs in a String , 2010, LATA.

[9]  Oscar H. Ibarra,et al.  Relating the Type of Ambiguity of Finite Automata to the Succinctness of Their Representation , 1989, SIAM J. Comput..

[10]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[11]  Jonathan Goldstine,et al.  On reducing the number of states in a PDA , 2005, Mathematical systems theory.

[12]  Jonathan Goldstine,et al.  On the Relation between Ambiguity and Nondeterminism in Finite Automata , 1992, Inf. Comput..

[13]  Haruo Hosoya,et al.  Multi-Return Macro Tree Transducers , 2008, PLAN-X.

[14]  Martin Kutrib,et al.  Context-dependent nondeterminism for pushdown automata , 2007, Theor. Comput. Sci..

[15]  Patrick C. Fischer,et al.  Computations with a restricted number of nondeterministic steps (Extended Abstract) , 1977, STOC '77.

[16]  Patrick C. Fischer,et al.  Real-time computations with restricted nondeterminism , 2005, Mathematical systems theory.

[17]  Michael A. Harrison,et al.  Introduction to formal language theory , 1978 .

[18]  Giovanni Pighizzini Deterministic Pushdown Automata and Unary Languages , 2008, CIAA.

[19]  Detlef Wotschke,et al.  Amounts of nondeterminism in finite automata , 1980, Acta Informatica.

[20]  Leslie G. Valiant,et al.  Regularity and Related Problems for Deterministic Pushdown Automata , 1975, JACM.

[21]  Markus Holzer,et al.  Finding Lower Bounds for Nondeterministic State Complexity Is Hard , 2006, Developments in Language Theory.

[22]  E. Landau Handbuch der Lehre von der Verteilung der Primzahlen , 1974 .

[23]  Hing Leung Descriptional complexity of nfa of different ambiguity , 2005, Int. J. Found. Comput. Sci..

[24]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[25]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[26]  Sheng Yu,et al.  Measures of Nondeterminism for Pushdown Automata , 1994, J. Comput. Syst. Sci..

[27]  John E. Hopcroft,et al.  An n log n algorithm for minimizing states in a finite automaton , 1971 .

[28]  Erik Meineche Schmidt,et al.  Succinctness of Descriptions of Unambiguous Context-Free Languages , 1977, SIAM J. Comput..

[29]  Juraj Hromkovic,et al.  Communication Complexity and Parallel Computing , 1997, Texts in Theoretical Computer Science An EATCS Series.

[30]  Hing Leung Structurally Unambiguous Finite Automata , 2006, CIAA.

[31]  Andreas Malcher,et al.  Minimizing finite automata is computationally hard , 2004, Theor. Comput. Sci..

[32]  Jeffrey Shallit,et al.  Unary Context-Free Grammars and Pushdown Automata, Descriptional Complexity and Auxiliary Space Lower Bounds , 2002, J. Comput. Syst. Sci..

[33]  Martin Kappes Descriptional Complexity of Deterministic Finite Automata with Multiple Initial States , 2000, J. Autom. Lang. Comb..

[34]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[35]  Hing Leung Separating Exponentially Ambiguous Finite Automata from Polynomially Ambiguous Finite Automata , 1998, SIAM J. Comput..

[36]  Marek Chrobak,et al.  Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..

[37]  Lawrence T. Kou,et al.  Multiple-Entry Finite Automata , 1974, J. Comput. Syst. Sci..

[38]  Martin Kutrib,et al.  Descriptional and Computational Complexity of Finite Automata , 2009, LATA.

[39]  Henrik Björklund,et al.  The tractability frontier for NFA minimization , 2008, J. Comput. Syst. Sci..

[40]  Michael Sipser Lower Bounds on the Size of Sweeping Automata , 1980, J. Comput. Syst. Sci..

[41]  Leslie G. Valiant,et al.  A Note on the Succinctness of Descriptions of Deterministic Languages , 1976, Inf. Control..

[42]  Martin Kutrib,et al.  NONDETERMINISTIC FINITE AUTOMATA — RECENT RESULTS ON THE DESCRIPTIONAL AND COMPUTATIONAL COMPLEXITY , 2009 .

[43]  E. M. Schmidt Succinctness of Descriptions of Context-Free, Regular and Finite Languages , 1977 .

[44]  Marek Chrobak,et al.  Errata to: "finite automata and unary languages" , 2003 .

[45]  Sheng Yu,et al.  On the State Complexity of k-Entry Deterministic Finite Automata , 2001, J. Autom. Lang. Comb..

[46]  Borivoj Melichar,et al.  Finding Common Motifs with Gaps Using Finite Automata , 2006, CIAA.

[47]  Martin Kutrib,et al.  On Measuring Non-recursive Trade-Offs , 2009, J. Autom. Lang. Comb..

[48]  Hartmut Klauck,et al.  Communication Complexity Method for Measuring Nondeterminism in Finite Automata , 2002, Inf. Comput..

[49]  Richard Edwin Stearns,et al.  A Regularity Test for Pushdown Machines , 1967, Inf. Control..

[50]  Christian Herzog Pushdown Automata with Bounded Nondeterminism and Bounded Ambiguity , 1997, Theor. Comput. Sci..

[51]  Tao Jiang,et al.  Minimal NFA Problems are Hard , 1991, SIAM J. Comput..

[52]  Dung T. Huynh,et al.  The Parallel Complexity of Finite-State Automata Problems , 1992, Inf. Comput..

[53]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[54]  Harry B. Hunt,et al.  On the Equivalence and Containment Problems for Unambiguous Regular Expressions, Regular Grammars and Finite Automata , 1985, SIAM J. Comput..

[55]  Ernst L. Leiss,et al.  Succint Representation of Regular Languages by Boolean Automata , 1981, Theor. Comput. Sci..

[56]  FRANK R. MOORE,et al.  On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata , 1971, IEEE Transactions on Computers.

[57]  Oscar H. Ibarra,et al.  On Sparseness, Ambiguity and other Decision Problems for Acceptors and Transducers , 1986, STACS.

[58]  Juris Hartmanis On the Succinctness of Different Representations of Languages , 1980, SIAM J. Comput..

[59]  Jonathan Goldstine,et al.  On reducing the number of stack symbols in a PDA , 2005, Mathematical systems theory.

[60]  Juraj Hromkovic,et al.  Ambiguity and Communication , 2009, STACS.

[61]  Seymour Ginsburg,et al.  Two Families of Languages Related to ALGOL , 1962, JACM.

[62]  Jeffrey Shallit,et al.  A Lower Bound Technique for the Size of Nondeterministic Finite Automata , 1996, Inf. Process. Lett..

[63]  A. R. Meyer,et al.  Economy of Description by Automata, Grammars, and Formal Systems , 1971, SWAT.

[64]  Martin Kutrib,et al.  Regulated nondeterminism in pushdown automata , 2009, Theor. Comput. Sci..

[65]  Martin Kutrib The phenomenon of non-recursive trade-offs , 2004, Int. J. Found. Comput. Sci..

[66]  Jean-Camille Birget,et al.  Intersection and Union of Regular Languages and State Complexity , 1992, Inf. Process. Lett..

[67]  Jonathan Goldstine,et al.  On Measuring Nondeterminism in Regular Languages , 1990, Inf. Comput..

[68]  Juris Hartmanis,et al.  On Gödel Speed-Up and Succinctness of Language Representations , 1983, Theor. Comput. Sci..

[69]  Dirk Vermeir,et al.  On the amount of non-determinism in pushdown in pushdown automata , 1981, Fundam. Informaticae.