Descriptional Complexity of (Un)ambiguous Finite State Machines and Pushdown Automata
暂无分享,去创建一个
[1] Martin Kutrib,et al. Descriptional Complexity - An Introductory Survey , 2010, Scientific Applications of Language Methods.
[2] Paulo A. S. Veloso,et al. Some Remarks on Multiple-Entry Finite Automata , 1979, J. Comput. Syst. Sci..
[3] Tao Jiang,et al. The Structure and Complexity of Minimal NFA's over a Unary Alphabet , 1991, Int. J. Found. Comput. Sci..
[4] Jonathan Goldstine,et al. Measuring nondeterminism in pushdown automata , 2005, J. Comput. Syst. Sci..
[5] Helmut Seidl,et al. On the Degree of Ambiguity of Finite Automata , 1991, Theor. Comput. Sci..
[6] E. Mark Gold,et al. Complexity of Automaton Identification from Given Data , 1978, Inf. Control..
[7] Grzegorz Rozenberg,et al. Developments in Language Theory II , 2002 .
[8] Wojciech Rytter,et al. On the Maximal Number of Cubic Runs in a String , 2010, LATA.
[9] Oscar H. Ibarra,et al. Relating the Type of Ambiguity of Finite Automata to the Succinctness of Their Representation , 1989, SIAM J. Comput..
[10] Arto Salomaa,et al. Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.
[11] Jonathan Goldstine,et al. On reducing the number of states in a PDA , 2005, Mathematical systems theory.
[12] Jonathan Goldstine,et al. On the Relation between Ambiguity and Nondeterminism in Finite Automata , 1992, Inf. Comput..
[13] Haruo Hosoya,et al. Multi-Return Macro Tree Transducers , 2008, PLAN-X.
[14] Martin Kutrib,et al. Context-dependent nondeterminism for pushdown automata , 2007, Theor. Comput. Sci..
[15] Patrick C. Fischer,et al. Computations with a restricted number of nondeterministic steps (Extended Abstract) , 1977, STOC '77.
[16] Patrick C. Fischer,et al. Real-time computations with restricted nondeterminism , 2005, Mathematical systems theory.
[17] Michael A. Harrison,et al. Introduction to formal language theory , 1978 .
[18] Giovanni Pighizzini. Deterministic Pushdown Automata and Unary Languages , 2008, CIAA.
[19] Detlef Wotschke,et al. Amounts of nondeterminism in finite automata , 1980, Acta Informatica.
[20] Leslie G. Valiant,et al. Regularity and Related Problems for Deterministic Pushdown Automata , 1975, JACM.
[21] Markus Holzer,et al. Finding Lower Bounds for Nondeterministic State Complexity Is Hard , 2006, Developments in Language Theory.
[22] E. Landau. Handbuch der Lehre von der Verteilung der Primzahlen , 1974 .
[23] Hing Leung. Descriptional complexity of nfa of different ambiguity , 2005, Int. J. Found. Comput. Sci..
[24] Robin Milner,et al. On Observing Nondeterminism and Concurrency , 1980, ICALP.
[25] 守屋 悦朗,et al. J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .
[26] Sheng Yu,et al. Measures of Nondeterminism for Pushdown Automata , 1994, J. Comput. Syst. Sci..
[27] John E. Hopcroft,et al. An n log n algorithm for minimizing states in a finite automaton , 1971 .
[28] Erik Meineche Schmidt,et al. Succinctness of Descriptions of Unambiguous Context-Free Languages , 1977, SIAM J. Comput..
[29] Juraj Hromkovic,et al. Communication Complexity and Parallel Computing , 1997, Texts in Theoretical Computer Science An EATCS Series.
[30] Hing Leung. Structurally Unambiguous Finite Automata , 2006, CIAA.
[31] Andreas Malcher,et al. Minimizing finite automata is computationally hard , 2004, Theor. Comput. Sci..
[32] Jeffrey Shallit,et al. Unary Context-Free Grammars and Pushdown Automata, Descriptional Complexity and Auxiliary Space Lower Bounds , 2002, J. Comput. Syst. Sci..
[33] Martin Kappes. Descriptional Complexity of Deterministic Finite Automata with Multiple Initial States , 2000, J. Autom. Lang. Comb..
[34] Dana S. Scott,et al. Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..
[35] Hing Leung. Separating Exponentially Ambiguous Finite Automata from Polynomially Ambiguous Finite Automata , 1998, SIAM J. Comput..
[36] Marek Chrobak,et al. Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..
[37] Lawrence T. Kou,et al. Multiple-Entry Finite Automata , 1974, J. Comput. Syst. Sci..
[38] Martin Kutrib,et al. Descriptional and Computational Complexity of Finite Automata , 2009, LATA.
[39] Henrik Björklund,et al. The tractability frontier for NFA minimization , 2008, J. Comput. Syst. Sci..
[40] Michael Sipser. Lower Bounds on the Size of Sweeping Automata , 1980, J. Comput. Syst. Sci..
[41] Leslie G. Valiant,et al. A Note on the Succinctness of Descriptions of Deterministic Languages , 1976, Inf. Control..
[42] Martin Kutrib,et al. NONDETERMINISTIC FINITE AUTOMATA — RECENT RESULTS ON THE DESCRIPTIONAL AND COMPUTATIONAL COMPLEXITY , 2009 .
[43] E. M. Schmidt. Succinctness of Descriptions of Context-Free, Regular and Finite Languages , 1977 .
[44] Marek Chrobak,et al. Errata to: "finite automata and unary languages" , 2003 .
[45] Sheng Yu,et al. On the State Complexity of k-Entry Deterministic Finite Automata , 2001, J. Autom. Lang. Comb..
[46] Borivoj Melichar,et al. Finding Common Motifs with Gaps Using Finite Automata , 2006, CIAA.
[47] Martin Kutrib,et al. On Measuring Non-recursive Trade-Offs , 2009, J. Autom. Lang. Comb..
[48] Hartmut Klauck,et al. Communication Complexity Method for Measuring Nondeterminism in Finite Automata , 2002, Inf. Comput..
[49] Richard Edwin Stearns,et al. A Regularity Test for Pushdown Machines , 1967, Inf. Control..
[50] Christian Herzog. Pushdown Automata with Bounded Nondeterminism and Bounded Ambiguity , 1997, Theor. Comput. Sci..
[51] Tao Jiang,et al. Minimal NFA Problems are Hard , 1991, SIAM J. Comput..
[52] Dung T. Huynh,et al. The Parallel Complexity of Finite-State Automata Problems , 1992, Inf. Comput..
[53] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[54] Harry B. Hunt,et al. On the Equivalence and Containment Problems for Unambiguous Regular Expressions, Regular Grammars and Finite Automata , 1985, SIAM J. Comput..
[55] Ernst L. Leiss,et al. Succint Representation of Regular Languages by Boolean Automata , 1981, Theor. Comput. Sci..
[56] FRANK R. MOORE,et al. On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata , 1971, IEEE Transactions on Computers.
[57] Oscar H. Ibarra,et al. On Sparseness, Ambiguity and other Decision Problems for Acceptors and Transducers , 1986, STACS.
[58] Juris Hartmanis. On the Succinctness of Different Representations of Languages , 1980, SIAM J. Comput..
[59] Jonathan Goldstine,et al. On reducing the number of stack symbols in a PDA , 2005, Mathematical systems theory.
[60] Juraj Hromkovic,et al. Ambiguity and Communication , 2009, STACS.
[61] Seymour Ginsburg,et al. Two Families of Languages Related to ALGOL , 1962, JACM.
[62] Jeffrey Shallit,et al. A Lower Bound Technique for the Size of Nondeterministic Finite Automata , 1996, Inf. Process. Lett..
[63] A. R. Meyer,et al. Economy of Description by Automata, Grammars, and Formal Systems , 1971, SWAT.
[64] Martin Kutrib,et al. Regulated nondeterminism in pushdown automata , 2009, Theor. Comput. Sci..
[65] Martin Kutrib. The phenomenon of non-recursive trade-offs , 2004, Int. J. Found. Comput. Sci..
[66] Jean-Camille Birget,et al. Intersection and Union of Regular Languages and State Complexity , 1992, Inf. Process. Lett..
[67] Jonathan Goldstine,et al. On Measuring Nondeterminism in Regular Languages , 1990, Inf. Comput..
[68] Juris Hartmanis,et al. On Gödel Speed-Up and Succinctness of Language Representations , 1983, Theor. Comput. Sci..
[69] Dirk Vermeir,et al. On the amount of non-determinism in pushdown in pushdown automata , 1981, Fundam. Informaticae.