Computational Design of Magnetic Molecules and their Environment: From Quantum Chemistry to Machine Learning and Multi-Scale Simulations.

Having served as playground for fundamental studies on the physics of d and f electrons for almost a century

[1]  A. Lunghi Spin-Phonon Relaxation in Magnetic Molecules: Theory, Predictions and Insights , 2022, 2202.03776.

[2]  A. Lunghi,et al.  Predicting tensorial molecular properties with equivariant machine learning models , 2022, Physical Review B.

[3]  B. Harvey,et al.  Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding , 2022, Science.

[4]  A. Lunghi Toward exact predictions of spin-phonon relaxation times: An ab initio implementation of open quantum systems theory , 2021, Science advances.

[5]  N. Chilton,et al.  Analysis of vibronic coupling in a 4f molecular magnet with FIRMS , 2021, Nature Communications.

[6]  J. Kästner,et al.  Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments. , 2021, Journal of chemical theory and computation.

[7]  F. Neese,et al.  Effect of Spin-Orbit Coupling on Phonon-Mediated Magnetic Relaxation in a Series of Zero-Valent Vanadium, Niobium, and Tantalum Isocyanide Complexes. , 2021, Inorganic chemistry.

[8]  Adam G. M. Lewis,et al.  Simulation of quantum physics with Tensor Processing Units: brute-force computation of ground states and time evolution , 2021, 2111.10466.

[9]  George H. Booth,et al.  The Variational Quantum Eigensolver: A review of methods and best practices , 2021, Physics Reports.

[10]  M. Tong,et al.  Magnetization Dynamics on Isotope-Isomorphic Holmium Single-Molecule Magnets. , 2021, Angewandte Chemie.

[11]  Abinash Swain,et al.  Are lanthanide-transition metal direct bonds a route to achieving new generation {3d-4f} SMMs? , 2021, Dalton transactions.

[12]  M. Briganti,et al.  Hetero-tri-spin systems: an alternative stairway to the single molecule magnet heaven? , 2021, Dalton transactions.

[13]  G. Rajaraman,et al.  Attaining record-high magnetic exchange, magnetic anisotropy and blocking barriers in dilanthanofullerenes , 2021, Chemical science.

[14]  A. Chiesa,et al.  A Cost-Effective Semi-Ab Initio Approach to Model Relaxation in Rare-Earth Single-Molecule Magnets , 2021, The journal of physical chemistry letters.

[15]  A. Chiesa,et al.  Simulating Static and Dynamic Properties of Magnetic Molecules with Prototype Quantum Computers , 2021, Magnetochemistry.

[16]  D. Truhlar,et al.  Machine-Learned Energy Functionals for Multiconfigurational Wave Functions. , 2021, The journal of physical chemistry letters.

[17]  C. A. Gaggioli,et al.  Active Learning Configuration Interaction for Excited-State Calculations of Polycyclic Aromatic Hydrocarbons , 2021, Journal of chemical theory and computation.

[18]  M. Briganti,et al.  Magnetic anisotropy on demand exploiting high-pressure as remote control: an ab initio proof of concept. , 2021, Dalton transactions.

[19]  Michael G. Taylor,et al.  Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning. , 2021, Chemical reviews.

[20]  W. Wernsdorfer,et al.  Measuring molecular magnets for quantum technologies , 2021, Nature Reviews Physics.

[21]  A. Tkatchenko,et al.  Machine Learning Force Fields: Recent Advances and Remaining Challenges. , 2021, The journal of physical chemistry letters.

[22]  Sergio D Pineda Flores Chembot: A Machine Learning Approach to Selective Configuration Interaction. , 2021, Journal of chemical theory and computation.

[23]  M. Meuwly Machine Learning for Chemical Reactions. , 2021, Chemical reviews.

[24]  Zujin Shi,et al.  Binding Sites, Vibrations and Spin‐Lattice Relaxation Times in Europium(II)‐Based Metallofullerene Spin Qubits , 2021, Chemistry.

[25]  M. Briganti,et al.  A Complete Ab Initio View of Orbach and Raman Spin–Lattice Relaxation in a Dysprosium Coordination Compound , 2021, Journal of the American Chemical Society.

[26]  Ryan G. Hadt,et al.  The Impact of Ligand Field Symmetry on Molecular Qubit Coherence. , 2021, Journal of the American Chemical Society.

[27]  Xiaosong Li,et al.  Reinforcement Learning Configuration Interaction. , 2021, Journal of chemical theory and computation.

[28]  Javier Robledo Moreno,et al.  Machine learning band gaps from the electron density , 2021, Physical Review Materials.

[29]  F. J. Heremans,et al.  Quantum guidelines for solid-state spin defects , 2021, Nature Reviews Materials.

[30]  D. Freedman,et al.  A Molecular Approach to Quantum Sensing , 2021, ACS central science.

[31]  Ryan G. Hadt,et al.  Deconvolving Contributions to Decoherence in Molecular Electron Spin Qubits: A Dynamic Ligand Field Approach. , 2021, Chemistry.

[32]  Isaac Tamblyn,et al.  Toward Orbital-Free Density Functional Theory with Small Data Sets and Deep Learning. , 2021, Journal of chemical theory and computation.

[33]  W. Wernsdorfer,et al.  Field-induced oscillation of magnetization blocking barrier in a holmium metallacrown single-molecule magnet , 2021, Chem.

[34]  C. Martins,et al.  How to create giant Dzyaloshinskii-Moriya interactions? Analytical derivation and ab initio calculations on model dicopper(II) complexes. , 2021, The Journal of chemical physics.

[35]  Debashree Ghosh,et al.  Configuration interaction trained by neural networks: Application to model polyaromatic hydrocarbons. , 2021, The Journal of chemical physics.

[36]  Yan Duan,et al.  Data mining, dashboard and statistical analysis: a powerful framework for the chemical design of molecular nanomagnets , 2021, 2103.03199.

[37]  J. Musfeldt,et al.  Spectroscopic Analysis of Vibronic Relaxation Pathways in Molecular Spin Qubit [Ho(W5O18)2]9-: Sparse Spectra Are Key. , 2021, Inorganic chemistry.

[38]  D. Fedorov,et al.  Modeling Spin-Crossover Dynamics. , 2021, Annual review of physical chemistry.

[39]  S. Vinko,et al.  Learning the exchange-correlation functional from nature with fully differentiable density functional theory , 2021, Physical review letters.

[40]  N. Chilton,et al.  Ab Initio Prediction of High-Temperature Magnetic Relaxation Rates in Single-Molecule Magnets. , 2021, Journal of the American Chemical Society.

[41]  S. Luber,et al.  A Machine Learning Approach for MP2 Correlation Energies and Its Application to Organic Compounds. , 2021, Journal of chemical theory and computation.

[42]  R. Wu,et al.  Origin of the anomalously low Raman exponents in single molecule magnets , 2021 .

[43]  M. Chiesa,et al.  Probing Vibrational Symmetry Effects and Nuclear Spin Economy Principles in Molecular Spin Qubits , 2020, Inorganic chemistry.

[44]  J. Bowman,et al.  Δ-machine learning for potential energy surfaces: A PIP approach to bring a DFT-based PES to CCSD(T) level of theory. , 2020, The Journal of chemical physics.

[45]  J. Roch,et al.  Temperature dependence of the longitudinal spin relaxation time T1 of single nitrogen-vacancy centers in nanodiamonds , 2020, Physical Review B.

[46]  Michael Gastegger,et al.  Machine Learning Force Fields , 2020, Chemical reviews.

[47]  M. Chiesa,et al.  Exploring the Organometallic Route to Molecular Spin Qubits: the [CpTi(cot)] case. , 2020, Angewandte Chemie.

[48]  Yan‐Zhen Zheng,et al.  A Local D4h Symmetric Dysprosium(III) Single-Molecule Magnet with an Energy Barrier Exceeding 2000 K. , 2020, Chemistry.

[49]  D. Truhlar,et al.  Magnetic Coupling in a Tris-hydroxo-bridged Chromium Dimer Occurs Through Ligand Mediated Superexchange in Conjunction with Through- Space Coupling. , 2020, Journal of the American Chemical Society.

[50]  A. Lunghi Insights into the Spin-Lattice Dynamics of Organic Radicals Beyond Molecular Tumbling: A Combined Molecular Dynamics and Machine-Learning Approach , 2020, Applied Magnetic Resonance.

[51]  T. Martínez,et al.  Electronic structure software. , 2020, The Journal of chemical physics.

[52]  A. Soncini,et al.  Mechanisms of spin-charge conversion for the electrical readout of 4f quantum states in a TbPc2 single-molecule magnet spin transistor , 2020 .

[53]  Michael Roemelt,et al.  Extending the ASS1ST active space selection scheme to large molecules and excited states. , 2020, Journal of chemical theory and computation.

[54]  Yan‐Zhen Zheng,et al.  Enhancing Magnetic Hysteresis in Single-Molecule Magnets by Ligand Functionalization , 2020 .

[55]  K. B. Whaley,et al.  Exploiting chemistry and molecular systems for quantum information science , 2020, Nature Reviews Chemistry.

[56]  H. Schmidt,et al.  Supersymmetric spin–phonon coupling prevents odd integer spins from quantum tunneling , 2020, The European Physical Journal B.

[57]  Frank Neese,et al.  The ORCA quantum chemistry program package. , 2020, The Journal of chemical physics.

[58]  Mickaël G. Delcey,et al.  Modern quantum chemistry with [Open]Molcas. , 2020, The Journal of chemical physics.

[59]  Victor Wen-zhe Yu,et al.  Siesta: Recent developments and applications. , 2020, The Journal of chemical physics.

[60]  S. Sanvito,et al.  Multiple spin-phonon relaxation pathways in a Kramer single-ion magnet. , 2020, The Journal of chemical physics.

[61]  Thierry Deutsch,et al.  Flexibilities of wavelets as a computational basis set for large-scale electronic structure calculations. , 2020, The Journal of chemical physics.

[62]  Alice E. A. Allen,et al.  The ONETEP linear-scaling density functional theory program. , 2020, The Journal of chemical physics.

[63]  J. Skelton,et al.  Understanding magnetic relaxation in single-ion magnets with high blocking temperature , 2020 .

[64]  E Weinan,et al.  Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning , 2020, SC20: International Conference for High Performance Computing, Networking, Storage and Analysis.

[65]  J. Schnack,et al.  Spin-phonon interaction induces tunnel splitting in single-molecule magnets , 2020, Physical Review B.

[66]  Denis Andrienko,et al.  Kernel-Based Machine Learning for Efficient Simulations of Molecular Liquids , 2020, Journal of chemical theory and computation.

[67]  S. Sanvito,et al.  Unveiling phonons in a molecular qubit with four-dimensional inelastic neutron scattering and density functional theory , 2020, Nature Communications.

[68]  S. Sanvito,et al.  The Limit of Spin Lifetime in Solid-State Electronic Spins. , 2020, The journal of physical chemistry letters.

[69]  L. Daemen,et al.  Inter-Kramers Transitions and Spin-Phonon Couplings in a Lanthanide-Based Single-Molecule Magnet. , 2020, Inorganic chemistry.

[70]  Christian Plessl,et al.  CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. , 2020, The Journal of chemical physics.

[71]  D. Bowler,et al.  Large scale and linear scaling DFT with the CONQUEST code. , 2020, The Journal of chemical physics.

[72]  R. Wu,et al.  Origins of Slow Magnetic Relaxation in Single-Molecule Magnets. , 2020, Physical review letters.

[73]  Stefano Sanvito,et al.  Surfing Multiple Conformation-Property Landscapes via Machine Learning: Designing Single-Ion Magnetic Anisotropy , 2020, The Journal of Physical Chemistry C.

[74]  A. Sheveleva,et al.  Magnetization Dynamics and Coherent Spin Manipulation of a Propeller Gd(III) Complex with the Smallest Helicene Ligand , 2020, The journal of physical chemistry letters.

[75]  A. Soncini,et al.  Lanthanide-Radical Magnetic Coupling in [LnPc2]0: Competing Exchange Mechanisms Captured via Ab Initio Multi-Reference Calculations , 2020, Quantum Materials Research.

[76]  Song Gao,et al.  Weak exchange coupling effects leading to fast magnetic relaxations in a trinuclear dysprosium single-molecule magnet , 2020 .

[77]  G. Chan,et al.  Theoretical prediction of magnetic exchange coupling constants from broken-symmetry coupled cluster calculations. , 2020, The Journal of chemical physics.

[78]  J. Stanton,et al.  Decoherence in Molecular Electron Spin Qubits: Insights from Quantum Many-Body Simulations. , 2019, The journal of physical chemistry letters.

[79]  David A. Strubbe,et al.  Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems. , 2019, The Journal of chemical physics.

[80]  J. Overgaard,et al.  High-Pressure Crystallographic and Magnetic Studies of Pseudo-D5h Symmetric Dy(III) and Ho(III) Single-Molecule Magnets. , 2019, Inorganic chemistry.

[81]  B. Shao,et al.  Single-Co Kondo effect in atomic Cu wires on Cu(111) , 2019, 1912.05292.

[82]  A. Podlesnyak,et al.  Spectroscopic Studies of the Magnetic Excitation and Spin-Phonon Couplings in a Single-Molecule Magnet. , 2019, Chemistry.

[83]  C. Pignedoli,et al.  Topological frustration induces unconventional magnetism in a nanographene , 2019, Nature Nanotechnology.

[84]  José J. Baldoví,et al.  In Silico Molecular Engineering of Dysprosocenium-Based Complexes to Decouple Spin Energy Levels from Molecular Vibrations. , 2019, The journal of physical chemistry letters.

[85]  Sebastian Dick,et al.  Machine learning accurate exchange and correlation functionals of the electronic density , 2019, Nature Communications.

[86]  J. Richter,et al.  Accuracy of the finite-temperature Lanczos method compared to simple typicality-based estimates , 2019, Physical Review Research.

[87]  Frank Noé,et al.  Machine learning for molecular simulation , 2019, Annual review of physical chemistry.

[88]  Ryan G. Hadt,et al.  The dynamic ligand field of a molecular qubit: decoherence through spin-phonon coupling. , 2019, Physical chemistry chemical physics : PCCP.

[89]  M. Brik,et al.  Ab initio analysis of the optical spectra and EPR parameters of Ni2+ ions in CaF2 and CdF2 crystals , 2019, Journal of Luminescence.

[90]  Alexander Tropsha,et al.  Materials Informatics , 2019, J. Chem. Inf. Model..

[91]  F. Noé,et al.  Deep-neural-network solution of the electronic Schrödinger equation , 2019, Nature Chemistry.

[92]  José J. Baldoví,et al.  Exploring the High-Temperature Frontier in Molecular Nanomagnets: From Lanthanides to Actinides. , 2019, Inorganic chemistry.

[93]  Volker L. Deringer,et al.  Machine Learning Interatomic Potentials as Emerging Tools for Materials Science , 2019, Advanced materials.

[94]  S. Sanvito,et al.  How do phonons relax molecular spins? , 2019, Science Advances.

[95]  Atanu Dey,et al.  Heterometallic 3d-4f Complexes as Single Molecule Magnets. , 2019, Chemistry, an Asian journal.

[96]  T. Bligaard,et al.  Machine Learning for Computational Heterogeneous Catalysis , 2019, ChemCatChem.

[97]  A. Ouerghi,et al.  Vanadyl phthalocyanines on graphene/SiC(0001): toward a hybrid architecture for molecular spin qubits , 2019, Nanoscale Horizons.

[98]  M. Marques,et al.  Recent advances and applications of machine learning in solid-state materials science , 2019, npj Computational Materials.

[99]  B. le Guennic,et al.  Covalency and magnetic anisotropy in lanthanide single molecule magnets: the DyDOTA archetype. , 2019, Chemical science.

[100]  S. Sanvito,et al.  First-Principles Investigation of Spin-Phonon Coupling in Vanadium-Based Molecular Spin Quantum Bits. , 2019, Inorganic chemistry.

[101]  Alessandro Chiesa,et al.  Quantum Computers as Universal Quantum Simulators: State‐of‐the‐Art and Perspectives , 2019, Advanced Quantum Technologies.

[102]  R. Sessoli,et al.  The Second Quantum Revolution: Role and Challenges of Molecular Chemistry. , 2019, Journal of the American Chemical Society.

[103]  Frank Pollmann,et al.  Simulating quantum many-body dynamics on a current digital quantum computer , 2019, npj Quantum Information.

[104]  R. Winpenny,et al.  Correlating blocking temperatures with relaxation mechanisms in monometallic single-molecule magnets with high energy barriers (Ueff > 600 K). , 2019, Chemical communications.

[105]  A. Aspuru-Guzik,et al.  Self-driving laboratory for accelerated discovery of thin-film materials , 2019, Science Advances.

[106]  J. van Slageren,et al.  Strong Exchange Couplings Drastically Slow Down Magnetization Relaxation in an Air‐Stable Cobalt(II)‐Radical Single‐Molecule Magnet (SMM) , 2019, Angewandte Chemie.

[107]  José J. Baldoví,et al.  Design of high-temperature f-block molecular nanomagnets through the control of vibration-induced spin relaxation , 2019 .

[108]  Angelos B. Canaj,et al.  Insight into D 6h Symmetry: Targeting Strong Axiality in Stable Dysprosium(III) Hexagonal Bipyramidal Single‐Ion Magnets , 2019, Angewandte Chemie.

[109]  K. Müller,et al.  Quantum chemical accuracy from density functional approximations via machine learning , 2020, Nature Communications.

[110]  Stefano Sanvito,et al.  A unified picture of the covalent bond within quantum-accurate force fields: From organic molecules to metallic complexes’ reactivity , 2019, Science Advances.

[111]  D. Pantazis Assessment of Double-Hybrid Density Functional Theory for Magnetic Exchange Coupling in Manganese Complexes , 2019, Inorganics.

[112]  S. Sanvito,et al.  Electronic spin-spin decoherence contribution in molecular qubits by quantum unitary spin dynamics , 2019, Journal of Magnetism and Magnetic Materials.

[113]  E. Coronado,et al.  Molecular spins for quantum computation , 2019, Nature Chemistry.

[114]  J. van Slageren,et al.  Chromium(iii)-based potential molecular quantum bits with long coherence times. , 2019, Physical chemistry chemical physics : PCCP.

[115]  B. Büchner,et al.  High Blocking Temperature of Magnetization and Giant Coercivity in the Azafullerene Tb2@C79N with a Single‐Electron Terbium–Terbium Bond , 2019, Angewandte Chemie.

[116]  Naftali Tishby,et al.  Machine learning and the physical sciences , 2019, Reviews of Modern Physics.

[117]  Ryo Nagai,et al.  Completing density functional theory by machine learning hidden messages from molecules , 2019, npj Computational Materials.

[118]  Anand Chandrasekaran,et al.  Solving the electronic structure problem with machine learning , 2019, npj Computational Materials.

[119]  Leroy Cronin,et al.  Organic synthesis in a modular robotic system driven by a chemical programming language , 2019, Science.

[120]  F. Neese,et al.  Chemistry and Quantum Mechanics in 2019: Give Us Insight and Numbers , 2019, Journal of the American Chemical Society.

[121]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[122]  F. Neese,et al.  A linear cobalt(II) complex with maximal orbital angular momentum from a non-Aufbau ground state , 2018, Science.

[123]  D. Vollhardt,et al.  Predicting the conductance of strongly correlated molecules: the Kondo effect in perchlorotriphenylmethyl/Au junctions. , 2018, Nanoscale.

[124]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[125]  J P Coe,et al.  Machine Learning Configuration Interaction. , 2018, Journal of chemical theory and computation.

[126]  F. Neese,et al.  Challenges in Multireference Perturbation Theory for the Calculations of the g-Tensor of First-Row Transition-Metal Complexes. , 2018, Journal of chemical theory and computation.

[127]  Alán Aspuru-Guzik,et al.  Inverse molecular design using machine learning: Generative models for matter engineering , 2018, Science.

[128]  F. Neese,et al.  Spin–phonon couplings in transition metal complexes with slow magnetic relaxation , 2018, Nature Communications.

[129]  Xin Yang,et al.  Structure and Magnetization Dynamics of Dy-Fe and Dy-Ru Bonded Complexes. , 2018, Angewandte Chemie.

[130]  K. Butler,et al.  Machine learning for molecular and materials science , 2018, Nature.

[131]  M. Ceriotti,et al.  Chemical shifts in molecular solids by machine learning , 2018, Nature Communications.

[132]  M. Tong,et al.  Single Ion Magnets from 3d to 5f: Developments and Strategies. , 2018, Chemistry.

[133]  V. García-Suárez,et al.  Effects of acceptor doping on a metalorganic switch: DFT vs. model analysis. , 2018, Physical chemistry chemical physics : PCCP.

[134]  C. Lambert,et al.  Magnetic edge states and coherent manipulation of graphene nanoribbons , 2018, Nature.

[135]  J. Ibañez-Azpiroz,et al.  Spin-fluctuation and spin-relaxation effects of single adatoms from first principles , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[136]  Junji Seino,et al.  Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density. , 2018, The Journal of chemical physics.

[137]  S. Sanvito,et al.  Proposal for a Dual Spin Filter Based on [VO(C3S4O)2]2– , 2018 .

[138]  F. Totti,et al.  The disclosure of mesoscale behaviour of a 3d-SMM monolayer on Au(111) through a multilevel approach. , 2018, Nanoscale.

[139]  Heather J Kulik,et al.  Accelerating Chemical Discovery with Machine Learning: Simulated Evolution of Spin Crossover Complexes with an Artificial Neural Network. , 2018, The journal of physical chemistry letters.

[140]  M. Mannini,et al.  Mössbauer spectroscopy of a monolayer of single molecule magnets , 2018, Nature Communications.

[141]  M. Brik,et al.  Optical absorption spectra and g factor of MgO: Mn 2+ explored by ab initio and semi empirical methods , 2018 .

[142]  F. Tuna,et al.  Measurement of Magnetic Exchange in Asymmetric Lanthanide Dimetallics: Toward a Transferable Theoretical Framework. , 2018, Journal of the American Chemical Society.

[143]  Stanislav M. Avdoshenko,et al.  Fullerene faraday cage keeps magnetic properties of inner cluster pristine , 2018, J. Comput. Chem..

[144]  D. Pantazis,et al.  Exchange Coupling Interactions from the Density Matrix Renormalization Group and N-Electron Valence Perturbation Theory: Application to a Biomimetic Mixed-Valence Manganese Complex. , 2018, Journal of chemical theory and computation.

[145]  M. Katsnelson,et al.  Origin of the quasiparticle peak in the spectral density of Cr(001) surfaces , 2017 .

[146]  Donald G. Truhlar,et al.  Computational Design of Functionalized Metal–Organic Framework Nodes for Catalysis , 2017, ACS central science.

[147]  S. Sanvito,et al.  Proposal for a dual spin filter based on [VO(C$_3$S$_4$O)$_2$]$^{2-}$ , 2017, 1712.06331.

[148]  F. Tuna,et al.  Molecular single-ion magnets based on lanthanides and actinides: Design considerations and new advances in the context of quantum technologies , 2017 .

[149]  David P. Mills,et al.  Molecular magnetic hysteresis at 60 kelvin in dysprosocenium , 2017, Nature.

[150]  A. Stroppa,et al.  On The Density Functional Theory Treatment of Lanthanide Coordination Compounds: A Comparative Study in a Series of Cu-Ln (Ln = Gd, Tb, Lu) Binuclear Complexes. , 2017, Inorganic chemistry.

[151]  F. Neese,et al.  Covalency and chemical bonding in transition metal complexes: An ab initio based ligand field perspective , 2017 .

[152]  Bernd Büchner,et al.  Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene , 2017, Nature Communications.

[153]  F. Neese,et al.  Ab Initio Ligand-Field Theory Analysis and Covalency Trends in Actinide and Lanthanide Free Ions and Octahedral Complexes. , 2017, Inorganic chemistry.

[154]  A. Caneschi,et al.  A chimeric design of heterospin 2p-3d, 2p-4f, and 2p-3d-4f complexes using a novel family of paramagnetic dissymmetric compartmental ligands. , 2017, Chemical communications.

[155]  Noam Bernstein,et al.  Machine learning unifies the modeling of materials and molecules , 2017, Science Advances.

[156]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[157]  Antonello Scardicchio,et al.  Massively parallel implementation and approaches to simulate quantum dynamics using Krylov subspace techniques , 2017, Comput. Phys. Commun..

[158]  E. Coronado,et al.  Determining Key Local Vibrations in the Relaxation of Molecular Spin Qubits and Single-Molecule Magnets. , 2017, The journal of physical chemistry letters.

[159]  L. Chibotaru,et al.  Ab Initio Crystal Field for Lanthanides. , 2017, Chemistry.

[160]  S. Sanvito,et al.  The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets , 2017, Nature Communications.

[161]  Heather J Kulik,et al.  Predicting electronic structure properties of transition metal complexes with neural networks† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc01247k , 2017, Chemical science.

[162]  S. Sanvito,et al.  Ab initio dynamical exchange interactions in frustrated anti-ferromagnets , 2017, 1702.00375.

[163]  K. Vignesh,et al.  Quenching the Quantum Tunneling of Magnetization in Heterometallic Octanuclear {TMIII4 DyIII4 } (TM=Co and Cr) Single-Molecule Magnets by Modification of the Bridging Ligands and Enhancing the Magnetic Exchange Coupling. , 2017, Chemistry.

[164]  I. Rungger,et al.  Quantum transport simulation scheme including strong correlations and its application to organic radicals adsorbed on gold , 2017, 1701.08405.

[165]  W. Kuch,et al.  Controlling the magnetism of adsorbed metal–organic molecules , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[166]  Donald G Truhlar,et al.  Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems. , 2017, Accounts of chemical research.

[167]  S. Sanvito,et al.  Ultrafast demagnetizing fields from first principles , 2017 .

[168]  Yan‐Zhen Zheng,et al.  On Approaching the Limit of Molecular Magnetic Anisotropy: A Near-Perfect Pentagonal Bipyramidal Dysprosium(III) Single-Molecule Magnet. , 2016, Angewandte Chemie.

[169]  E. Gross,et al.  Ultrafast demagnetization in bulk versus thin films: an ab initio study , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[170]  E. Gross,et al.  Ultrafast laser induced local magnetization dynamics in Heusler compounds , 2016, Scientific Reports.

[171]  L. Sorace,et al.  Giant spin-phonon bottleneck effects in evaporable vanadyl-based molecules with long spin coherence. , 2016, Dalton transactions.

[172]  Li Li,et al.  Bypassing the Kohn-Sham equations with machine learning , 2016, Nature Communications.

[173]  M. Chiesa,et al.  Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety. , 2016, Journal of the American Chemical Society.

[174]  L. Chibotaru,et al.  Strategies toward High-Temperature Lanthanide-Based Single-Molecule Magnets. , 2016, Inorganic chemistry.

[175]  Alberto García,et al.  Improvements on non-equilibrium and transport Green function techniques: The next-generation transiesta , 2016, Comput. Phys. Commun..

[176]  F. Totti,et al.  Toward Mesoscale Properties of Self-Assembled Monolayers of SMM on Au(111): An Integrated Ad Hoc FF and DFT Study , 2016 .

[177]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[178]  T. Rangel,et al.  Ab initio phonon dispersion in crystalline naphthalene using van der Waals density functionals , 2016 .

[179]  F. Tuna,et al.  Toward Molecular 4f Single-Ion Magnet Qubits. , 2016, Journal of the American Chemical Society.

[180]  Jeffrey B Schriber,et al.  Communication: An adaptive configuration interaction approach for strongly correlated electrons with tunable accuracy. , 2016, The Journal of chemical physics.

[181]  Stefano de Gironcoli,et al.  Reproducibility in density functional theory calculations of solids , 2016, Science.

[182]  E. Coronado,et al.  Enhancing coherence in molecular spin qubits via atomic clock transitions , 2016, Nature.

[183]  J. van Slageren,et al.  Tuning of molecular qubits: very long coherence and spin-lattice relaxation times. , 2016, Chemical communications.

[184]  F. Neese,et al.  A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier , 2016, Nature Communications.

[185]  Markus Reiher,et al.  Automated Selection of Active Orbital Spaces. , 2016, Journal of chemical theory and computation.

[186]  F. Sanz,et al.  Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport. , 2016, Nano letters.

[187]  M. Singh,et al.  Record high magnetic exchange and magnetization blockade in Ln2@C79N (Ln = Gd(III) and Dy(III)) molecules: a theoretical perspective. , 2015, Chemical communications.

[188]  Joseph M. Zadrozny,et al.  Millisecond Coherence Time in a Tunable Molecular Electronic Spin Qubit , 2015, ACS central science.

[189]  S. Sanvito,et al.  Role of spin-orbit interaction in the ultrafast demagnetization of small iron clusters , 2015, 1511.00864.

[190]  J. M. Gottfried Surface chemistry of porphyrins and phthalocyanines , 2015 .

[191]  K. Murray,et al.  A Family of {Cr(III)2Ln(III)2} Butterfly Complexes: Effect of the Lanthanide Ion on the Single-Molecule Magnet Properties. , 2015, Inorganic chemistry.

[192]  Liviu F Chibotaru,et al.  Giant exchange interaction in mixed lanthanides , 2015, Scientific Reports.

[193]  K. Pedersen,et al.  Design of Single-Molecule Magnets: Insufficiency of the Anisotropy Barrier as the Sole Criterion. , 2015, Inorganic chemistry.

[194]  F. Totti,et al.  Single molecule magnets grafted on gold: magnetic properties from ab initio molecular dynamics , 2015 .

[195]  J. Long,et al.  Radical ligand-containing single-molecule magnets , 2015 .

[196]  A. Caneschi,et al.  Molecular magnets and surfaces: A promising marriage. A DFT insight , 2015 .

[197]  Zhenwei Li,et al.  Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. , 2015, Physical review letters.

[198]  N. Chilton Design criteria for high-temperature single-molecule magnets. , 2015, Inorganic chemistry.

[199]  B. le Guennic,et al.  Magnetic memory in an isotopically enriched and magnetically isolated mononuclear dysprosium complex. , 2015, Angewandte Chemie.

[200]  L. Chibotaru,et al.  The first 4d/4f single-molecule magnet containing a {Ru(III)2Dy(III)2} core. , 2015, Chemical communications.

[201]  M. Odelius,et al.  Systematic theoretical investigation of the zero-field splitting in Gd(III) complexes: wave function and density functional approaches. , 2015, The Journal of chemical physics.

[202]  D. Jacob Towards a full ab initio theory of strong electronic correlations in nanoscale devices , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[203]  Conrad A. P. Goodwin,et al.  The first near-linear bis(amide) f-block complex: a blueprint for a high temperature single molecule magnet. , 2015, Chemical communications.

[204]  F. Totti,et al.  DFT magnetic characterization of a Fe4 SMMs series: from isotropic exchange interactions to multi-spin zero field splitting , 2014 .

[205]  Christian Trott,et al.  Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials , 2014, J. Comput. Phys..

[206]  Joseph M. Zadrozny,et al.  A mononuclear transition metal single-molecule magnet in a nuclear spin-free ligand environment. , 2014, Inorganic chemistry.

[207]  F. Delgado,et al.  Control of single-spin magnetic anisotropy by exchange coupling. , 2014, Nature nanotechnology.

[208]  E. Cremades,et al.  Origin of slow magnetic relaxation in Kramers ions with non-uniaxial anisotropy , 2014, Nature Communications.

[209]  António Manuel de Almeida Costa,et al.  Renormalization of electron self-energies via their interaction with spin excitations: A first-principles investigation , 2014, 1406.4195.

[210]  W. Wernsdorfer,et al.  Electrically driven nuclear spin resonance in single-molecule magnets , 2014, Science.

[211]  Liviu F Chibotaru,et al.  Fine-tuning the local symmetry to attain record blocking temperature and magnetic remanence in a single-ion magnet. , 2014, Angewandte Chemie.

[212]  S. Grimme,et al.  DFT-D3 Study of Some Molecular Crystals , 2014 .

[213]  T. Jung,et al.  Exchange interaction of strongly anisotropic tripodal erbium single-ion magnets with metallic surfaces. , 2014, ACS nano.

[214]  A. Smogunov,et al.  Kondo conductance across the smallest spin 1/2 radical molecule , 2013, Proceedings of the National Academy of Sciences.

[215]  Joseph M. Zadrozny,et al.  Slow magnetic relaxation in the tetrahedral cobalt(II) complexes [Co(EPh)4]2− (EO, S, Se) , 2013 .

[216]  Liviu F Chibotaru,et al.  A {Cr(III)₂Dy(III)₂} single-molecule magnet: enhancing the blocking temperature through 3d magnetic exchange. , 2013, Angewandte Chemie.

[217]  Gabriel Aeppli,et al.  Potential for spin-based information processing in a thin-film molecular semiconductor , 2013, Nature.

[218]  Frank Neese,et al.  Magnetic blocking in a linear iron(I) complex. , 2013, Nature chemistry.

[219]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[220]  Ross C. Walker,et al.  An overview of the Amber biomolecular simulation package , 2013 .

[221]  M. Odelius,et al.  Zero-field splitting in nickel(II) complexes: a comparison of DFT and multi-configurational wavefunction calculations. , 2013, The Journal of chemical physics.

[222]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[223]  R. Kondor,et al.  On representing chemical environments , 2012, 1209.3140.

[224]  L. Chibotaru,et al.  Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation. , 2012, The Journal of chemical physics.

[225]  D. Gatteschi,et al.  EPR of Exchange Coupled Systems , 2012 .

[226]  D Alfè,et al.  Assessment of density functional theory for iron(II) molecules across the spin-crossover transition. , 2012, The Journal of chemical physics.

[227]  R. Wiesendanger,et al.  Molecular Kondo chain. , 2012, Nano letters.

[228]  S. Sanvito,et al.  Bias asymmetry in the conductance profile of magnetic ions on surfaces probed by scanning tunneling microscopy , 2012, 1203.6238.

[229]  Jinlong Yang,et al.  Iron-phthalocyanine molecular junction with high spin filter efficiency and negative differential resistance. , 2012, The Journal of chemical physics.

[230]  S. Sanvito,et al.  Giant resistance change across the phase transition in spin-crossover molecules. , 2012, Physical review letters.

[231]  Manuel Gruber,et al.  Robust spin crossover and memristance across a single molecule , 2012, Nature Communications.

[232]  N. Marzari,et al.  Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.

[233]  Klaus-Robert Müller,et al.  Finding Density Functionals with Machine Learning , 2011, Physical review letters.

[234]  G. Kirczenow,et al.  Ligand-based transport resonances of single-molecule-magnet spin filters: Suppression of Coulomb blockade and determination of easy-axis orientation , 2011, 1111.5294.

[235]  Liviu F Chibotaru,et al.  Magnetic anisotropy in the excited states of low symmetry lanthanide complexes. , 2011, Physical chemistry chemical physics : PCCP.

[236]  J. Long,et al.  Exploiting single-ion anisotropy in the design of f-element single-molecule magnets , 2011 .

[237]  J. Long,et al.  A N2(3-) radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. , 2011, Journal of the American Chemical Society.

[238]  D. Pantazis,et al.  Detailed ab initio first-principles study of the magnetic anisotropy in a family of trigonal pyramidal iron(II) pyrrolide complexes. , 2011, Inorganic chemistry.

[239]  J. Long,et al.  Strong exchange and magnetic blocking in N₂³⁻-radical-bridged lanthanide complexes. , 2011, Nature chemistry.

[240]  F. Neese,et al.  Theoretical determination of the zero-field splitting in copper acetate monohydrate. , 2011, Inorganic chemistry.

[241]  S. Sanvito,et al.  Perturbative approach to the Kondo effect in magnetic atoms on nonmagnetic substrates , 2011, 1104.2764.

[242]  J. Veciana,et al.  Surface supramolecular organization of a terbium(III) double-decker complex on graphite and its single molecule magnet behavior. , 2011, Journal of the American Chemical Society.

[243]  S. Sanvito,et al.  Spin-flip inelastic electron tunneling spectroscopy in atomic chains , 2011, 1103.2652.

[244]  M. Shiraishi,et al.  Molecular Spintronics , 2011, 1102.4151.

[245]  N. Lorente,et al.  Multi-orbital non-crossing approximation from maximally localized Wannier functions: the Kondo signature of copper phthalocyanine on Ag(100) , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[246]  S. Sanvito,et al.  Electric field control of valence tautomeric interconversion in cobalt dioxolene. , 2011, Physical review letters.

[247]  M. Troyer,et al.  Continuous-time Monte Carlo methods for quantum impurity models , 2010, 1012.4474.

[248]  J. Long,et al.  Slow magnetic relaxation in a family of trigonal pyramidal iron(II) pyrrolide complexes. , 2010, Journal of the American Chemical Society.

[249]  F. Neese,et al.  Systematic theoretical study of the zero-field splitting in coordination complexes of Mn(III). Density functional theory versus multireference wave function approaches. , 2010, The journal of physical chemistry. A.

[250]  N. Konstantinidis,et al.  Electric field controlled magnetic anisotropy in a single molecule. , 2010, Nano letters.

[251]  Jinlong Yang,et al.  Single-molecule chemistry of metal phthalocyanine on noble metal surfaces. , 2010, Accounts of chemical research.

[252]  B. Sothmann,et al.  Nonequilibrium current and noise in inelastic tunneling through a magnetic atom , 2010, 1003.3794.

[253]  Stefan Blügel,et al.  Strength and directionality of surface Ruderman–Kittel–Kasuya–Yosida interaction mapped on the atomic scale , 2010 .

[254]  T. Pruschke,et al.  Continuous-time quantum Monte Carlo and maximum entropy approach to an imaginary-time formulation of strongly correlated steady-state transport. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[255]  Xingyu Zhao,et al.  Spin filter effect of manganese phthalocyanine contacted with single-walled carbon nanotube electrodes. , 2010, The Journal of chemical physics.

[256]  Christopher J. Chang,et al.  Slow magnetic relaxation in a high-spin iron(II) complex. , 2010, Journal of the American Chemical Society.

[257]  F. Delgado,et al.  Spin-transfer torque on a single magnetic adatom. , 2009, Physical review letters.

[258]  R. Wiesendanger Spin mapping at the nanoscale and atomic scale , 2009 .

[259]  M. Katsnelson,et al.  Orbitally controlled Kondo effect of Co ad-atoms on graphene , 2009, 0911.2103.

[260]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[261]  N. Guihéry,et al.  Universal Theoretical Approach to Extract Anisotropic Spin Hamiltonians. , 2009, Journal of chemical theory and computation.

[262]  S. Sanvito,et al.  Electrostatic spin crossover effect in polar magnetic molecules. , 2009, Nature materials.

[263]  A. Smogunov,et al.  Kondo conductance in an atomic nanocontact from first principles. , 2009, Nature materials.

[264]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[265]  S. Shukla,et al.  Electron transport across electrically switchable magnetic molecules , 2009, 0905.1607.

[266]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[267]  N. Lorente,et al.  Efficient spin transitions in inelastic electron tunneling spectroscopy. , 2009, Physical review letters.

[268]  Frank Neese,et al.  How to build molecules with large magnetic anisotropy. , 2009, Chemistry.

[269]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[270]  F. Neese Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental theory to exchange-coupling , 2009 .

[271]  J. Fernández-Rossier,et al.  Theory of single-spin inelastic tunneling spectroscopy. , 2009, Physical review letters.

[272]  J. Ferrer,et al.  Spin-filtering effect in the transport through a single-molecule magnet Mn$_{12}$ bridged between metallic electrodes , 2009, 0901.4271.

[273]  F. Totti,et al.  A Few Comments on the Application of Density Functional Theory to the Calculation of the Magnetic Structure of Oligo-Nuclear Transition Metal Clusters. , 2009, Journal of chemical theory and computation.

[274]  O. Eriksson,et al.  Theory of spin-polarized scanning tunneling microscopy applied to local spins , 2008, 0812.4956.

[275]  M. Paulsson,et al.  Theory of tunneling spectroscopy in a Mn12 single-electron transistor by density-functional theory methods. , 2008, Physical review letters.

[276]  M. Persson Theory of inelastic electron tunneling from a localized spin in the impulsive approximation. , 2008, Physical review letters.

[277]  Ilya Kuprov,et al.  Polynomially scaling spin dynamics II: further state-space compression using Krylov subspace techniques and zero track elimination. , 2008, Journal of magnetic resonance.

[278]  M. Leijnse,et al.  Kinetic equations for transport through single-molecule transistors , 2008, 0807.4027.

[279]  Stefano Sanvito,et al.  Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition , 2008 .

[280]  Celestino Angeli,et al.  On the applicability of multireference second‐order perturbation theory to study weak magnetic coupling in molecular complexes , 2008, J. Comput. Chem..

[281]  F. Neese,et al.  A systematic density functional study of the zero-field splitting in Mn(II) coordination compounds. , 2008, Inorganic chemistry.

[282]  O. Waldmann A criterion for the anisotropy barrier in single-molecule magnets. , 2007, Inorganic chemistry.

[283]  Frank Neese,et al.  Calculation of the zero-field splitting tensor on the basis of hybrid density functional and Hartree-Fock theory. , 2007, The Journal of chemical physics.

[284]  J. Long,et al.  Magnetic exchange coupling in chloride-bridged 5f-3d heterometallic complexes generated via insertion into a uranium(IV) dimethylpyrazolate dimer. , 2007, Journal of the American Chemical Society.

[285]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[286]  I. Kuprov,et al.  Polynomially scaling spin dynamics simulation algorithm based on adaptive state-space restriction. , 2007, Journal of magnetic resonance.

[287]  M. E. Casida,et al.  Assessment of the exchange-correlation functionals for the physical description of spin transition phenomena by density functional theory methods: all the same? , 2007, The Journal of chemical physics.

[288]  C. Toher,et al.  Efficient atomic self-interaction correction scheme for nonequilibrium quantum transport. , 2006, Physical review letters.

[289]  Frank Neese,et al.  First-principles calculations of zero-field splitting parameters. , 2006, The Journal of chemical physics.

[290]  F. Neese Importance of direct spin-spin coupling and spin-flip excitations for the zero-field splittings of transition metal complexes: a case study. , 2006, Journal of the American Chemical Society.

[291]  Cyrus F. Hirjibehedin,et al.  Spin Coupling in Engineered Atomic Structures , 2006, Science.

[292]  J. Ferrer,et al.  Spin and molecular electronics in atomically generated orbital landscapes , 2006 .

[293]  G. Kearley,et al.  Intermolecular interactions in solid benzene. , 2006, The Journal of chemical physics.

[294]  S. Sarma,et al.  Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid-state environment , 2005, cond-mat/0512323.

[295]  Ren-Bao Liu,et al.  Theory of electron spin decoherence by interacting nuclear spins in a quantum dot , 2005, cond-mat/0508441.

[296]  Taisuke Ozaki,et al.  Efficient projector expansion for the ab initio LCAO method , 2005 .

[297]  K. Burke,et al.  Self-interaction errors in density-functional calculations of electronic transport. , 2005, Physical review letters.

[298]  T. Wesołowski,et al.  Ground states, excited states, and metal-ligand bonding in rare earth hexachloro complexes: a DFT-based ligand field study. , 2005, Inorganic chemistry.

[299]  K. Burke,et al.  Zero-bias molecular electronics: Exchange-correlation corrections to Landauer's formula , 2005, cond-mat/0502385.

[300]  G. Vignale,et al.  Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems. , 2004, Physical review letters.

[301]  D. Eigler,et al.  Single-Atom Spin-Flip Spectroscopy , 2004, Science.

[302]  G. Vidal,et al.  A pr 2 00 4 Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces , 2022 .

[303]  W. Wernsdorfer,et al.  Energy-barrier enhancement by ligand substitution in tetrairon(III) single-molecule magnets. , 2004, Angewandte Chemie.

[304]  N. Re,et al.  A tetranuclear 3d-4f single molecule magnet: [CuIILTbIII(hfac)2]2. , 2004, Journal of the American Chemical Society.

[305]  Tunna Baruah,et al.  Density functional studies of single molecule magnets , 2003 .

[306]  S. Koshihara,et al.  Lanthanide double-decker complexes functioning as magnets at the single-molecular level. , 2003, Journal of the American Chemical Society.

[307]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[308]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[309]  F. Allen,et al.  Cambridge Structural Database , 2002 .

[310]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[311]  Celestino Angeli,et al.  Introduction of n-electron valence states for multireference perturbation theory , 2001 .

[312]  C. Walsby,et al.  Rotation matrix elements and further decomposition functions of two-vector tesseral spherical tensor operators; their uses in electron paramagnetic resonance spectroscopy , 2000 .

[313]  Y. Kitagawa,et al.  Ab initio computations of effective exchange integrals for H–H, H–He–H and Mn2O2 complex: comparison of broken-symmetry approaches , 2000 .

[314]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[315]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[316]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[317]  F. Neese,et al.  Calculation of Zero-Field Splittings, g-Values, and the Relativistic Nephelauxetic Effect in Transition Metal Complexes. Application to High-Spin Ferric Complexes. , 1998, Inorganic chemistry.

[318]  Luis Serrano-Andrés,et al.  The multi-state CASPT2 method , 1998 .

[319]  J. Malrieu,et al.  An iterative difference-dedicated configuration interaction. Proposal and test studies , 1995 .

[320]  A. Caneschi,et al.  Magnetic bistability in a metal-ion cluster , 1993, Nature.

[321]  Marc Kastner,et al.  Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures , 1993 .

[322]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[323]  R. Landauer,et al.  Spatial variation of currents and fields due to localized scatterers in metallic conduction , 1988, IBM J. Res. Dev..

[324]  L. Nordenskiöld,et al.  Theory of nuclear spin relaxation in paramagnetic systems in solution , 1986 .

[325]  R. Landauer,et al.  Generalized many-channel conductance formula with application to small rings. , 1985, Physical review. B, Condensed matter.

[326]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[327]  Louis Noodleman,et al.  Valence bond description of antiferromagnetic coupling in transition metal dimers , 1981 .

[328]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[329]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[330]  N. Mermin Thermal Properties of the Inhomogeneous Electron Gas , 1965 .

[331]  J. Kondo Resistance Minimum in Dilute Magnetic Alloys , 1964 .

[332]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[333]  R. Orbach Spin-lattice relaxation in rare-earth salts , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[334]  F. Bloch,et al.  Zur Theorie des Ferromagnetismus , 1930 .

[335]  Adam G. M. Lewis,et al.  Tensor Processing Units as Quantum Chemistry Supercomputers , 2022 .

[336]  W. Wernsdorfer,et al.  Molecular Magnetism , 2021, Handbook of Magnetism and Magnetic Materials.

[337]  A. Powell,et al.  What do 3d-4f butterflies tell us? , 2021 .

[338]  O. Isayev,et al.  ANI-1: an extensible neural network potential with DFT accuracy at force fi eld computational cost † , 2017 .

[339]  A. Tkatchenko,et al.  First‐principles modeling of molecular crystals: structures and stabilities, temperature and pressure , 2017 .

[340]  Diana Adler,et al.  Electronic Transport In Mesoscopic Systems , 2016 .

[341]  Robert Kohl,et al.  Electron Paramagnetic Resonance Of Transition Ions , 2016 .

[342]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[343]  Frank Neese,et al.  A theoretical analysis of chemical bonding, vibronic coupling, and magnetic anisotropy in linear iron(II) complexes with single-molecule magnet behavior , 2013 .

[344]  D. Pantazis,et al.  What is not required to make a single molecule magnet. , 2011, Faraday discussions.

[345]  Alexander B. Pacheco Introduction to Computational Chemistry , 2011 .

[346]  K. Awaga,et al.  Single-Molecule Magnets , 2003 .

[347]  S. Eaton,et al.  Relaxation Times of Organic Radicals and Transition Metal Ions , 2002 .

[348]  Michel Devoret,et al.  Single Charge Tunneling , 1992 .

[349]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[350]  H. K. Magnetism and Matter , 1935, Nature.

[351]  D. Barreca,et al.  2 9 M ar 2 00 6 Electron transport through single Mn 12 molecular magnets , 2022 .

[352]  G.,et al.  On the Theory of Relaxation Processes * , 2022 .