On-line database of the spectral properties of polycyclic aromatic hydrocarbons

Abstract We present an on-line database of computed molecular properties for a large sample of polycyclic aromatic hydrocarbons in four charge states: −1, 0, +1, and +2. At present our database includes 40 molecules ranging in size from naphthalene and azulene (C 10 H 8 ) up to circumovalene (C 66 H 20 ). We performed our calculations in the framework of the density functional theory (DFT) and the time-dependent DFT to obtain the most relevant molecular parameters needed for astrophysical applications. For each molecule in the sample, our database presents in a uniform way the energetic, rotational, vibrational, and electronic properties. It is freely accessible on the web at http://astrochemistry.ca.astro.it/database/ and http://www.cesr.fr/~joblin/database/ .

[1]  S. Sandford,et al.  Infrared spectroscopy of polycyclic aromatic hydrocarbon cations. 1. Matrix-isolated naphthalene and perdeuterated naphthalene. , 1994, The Journal of physical chemistry.

[2]  F. Pauzat,et al.  The 3.2–3.5 μm region revisited – II. A theoretical study of the effects of hydrogenation on some model PAHs , 2001 .

[3]  E. Gross,et al.  Time-dependent density functional theory. , 2004, Annual review of physical chemistry.

[4]  F. Pauzat,et al.  Modelling the signatures of interstellar polycyclic aromatic hydrocarbons with quantum chemistry , 1998 .

[5]  M. Aldén,et al.  Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. II. Flame-seeding measurements , 2001 .

[6]  D. Talbi,et al.  Theoretical infrared spectra of some model polycyclic aromatic hydrocarbons: effect of ionization. , 1993, The Astrophysical journal.

[7]  Y. Keheyan,et al.  The interstellar chemistry of PAH cations , 1998, Nature.

[8]  S. Langhoff Theoretical Infrared Spectra for Polycyclic Aromatic Hydrocarbon Neutrals, Cations and Anions , 1996 .

[9]  S. Hirata,et al.  Vibrational and Electronic Absorption Spectroscopy of 2,3-Benzofluorene and its Cation. , 2004 .

[10]  K. Gordon,et al.  Small Polycyclic Aromatic Hydrocarbons in the Red Rectangle , 2005 .

[11]  Stefan Grimme,et al.  A TDDFT study of the lowest excitation energies of polycyclic aromatic hydrocarbons , 2003 .

[12]  M. Head‐Gordon,et al.  Electronic transitions in the IR: Matrix isolation spectroscopy and electronic structure theory calculations on polyacenes and dibenzopolyacenes , 2005 .

[13]  David A. Williams,et al.  The infrared spectrum of interstellar dust: Surface functional groups on carbon , 1981 .

[14]  C. Dessent A density functional theory study of the anthracene anion , 2000 .

[15]  P. Ehrenfreund,et al.  Rotational spectra of quinoline and of isoquinoline: spectroscopic constants and electric dipole moments , 2003 .

[16]  S. Tobita,et al.  Single- and double-ionization potentials of polycyclic aromatic hydrocarbons and fullerenes by photon and electron impact , 1994 .

[17]  G. Moreels,et al.  Tentative identification of pyrene as a polycyclic aromatic molecule in UV spectra of comet P/Halley: An emission from 368 to 384 nm , 2004 .

[18]  R. L. Kuczkowski,et al.  Interstellar chemistry: a strategy for detecting polycyclic aromatic hydrocarbons in space. , 2005, Journal of the American Chemical Society.

[19]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[20]  Olivier Pirali,et al.  Far-infrared spectroscopy of small polycyclic aromatic hydrocarbons. , 2006, Physical chemistry chemical physics : PCCP.

[21]  A. Dalgarno,et al.  Heating of interstellar gas by large molecules or small grains , 1988 .

[22]  K. Gordon,et al.  Blue Luminescence and the Presence of Small Polycyclic Aromatic Hydrocarbons in the Interstellar Medium , 2005 .

[23]  O. Parisel,et al.  Electronic and vibrational spectra of matrix isolated anthracene radical cations - Experimental and theoretical aspects , 1993 .

[24]  Farid Salama,et al.  First detection of an ultraviolet transition in an ionized polycyclic aromatic hydrocarbon , 1999 .

[25]  G. Loew,et al.  Theoretical Study of the Electronic Spectra of a Polycyclic Aromatic Hydrocarbon, Naphthalene, and its Derivatives , 1993 .

[26]  L. T. Scott,et al.  Single and Double Ionization of Corannulene and Coronene , 2001 .

[27]  G. Mulas,et al.  Testing the “strong” PAHs hypothesis - I. Profile invariance of electronic transitions of interstellar PAH cations , 2003 .

[28]  Á. Rubio,et al.  octopus: a first-principles tool for excited electron-ion dynamics. , 2003 .

[29]  C. Joblin,et al.  Photoinduced fluorescence from the perylene cation isolated in Ne and Ar matrices , 1995 .

[30]  C. Joblin,et al.  Contribution of Polycyclic Aromatic Hydrocarbon Molecules to the Interstellar Extinction Curve , 1992 .

[31]  M. Deleuze,et al.  Benchmark theoretical study of the ionization threshold of benzene and oligoacenes , 2003 .

[32]  G. P. Forêts,et al.  Molecular Hydrogen in Space: Observations and Models , 2000 .

[33]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[34]  J. Platt On the Optical Properties of Interstellar Dust. , 1956 .

[35]  W. R. Thompson,et al.  Polycyclic aromatic hydrocarbons in the atmospheres of Titan and Jupiter. , 1993, The Astrophysical journal.

[36]  J. Krełowski,et al.  Origin of diffuse interstellar bands: spectroscopic studies of their possible carriers , 2000 .

[37]  Richard G. Arendt,et al.  Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints , 2003, astro-ph/0312641.

[38]  J. Barker Monte Carlo calculations on unimolecular reactions, energy transfer, and IR-multiphoton decomposition☆ , 1983 .

[39]  A. Tielens,et al.  Ionized polycyclic aromatic hydrocarbons and the diffuse interstellar bands , 1985 .

[40]  M. Head‐Gordon,et al.  Electronic spectra and ionization potentials of a stable class of closed shell polycyclic aromatic hydrocarbon cations. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[41]  R. Saykally,et al.  Infrared cavity ringdown spectroscopy of jet-cooled polycyclic aromatic hydrocarbons. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[42]  D. Talbi,et al.  The PAH hypothesis: a computational experiment on the combined effects of ionization and dehydrogenation on the IR signatures. , 1997 .

[43]  J. B. Birks,et al.  Photophysics of aromatic molecules , 1970 .

[44]  Vincenzo Barone,et al.  Vibrational zero-point energies and thermodynamic functions beyond the harmonic approximation. , 2004, The Journal of chemical physics.

[45]  V. Bierbaum,et al.  Hydrogenation and Charge States of Polycyclic Aromatic Hydrocarbons in Diffuse Clouds. II. Results , 2003 .

[46]  D. Hudgins,et al.  Infrared spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. 2. The members of the thermodynamically most favorable series through coronene. , 1995, The Journal of physical chemistry.

[47]  C. Joblin,et al.  Calculations of the far-infrared emission of C24H12 under interstellar conditions , 2002 .

[48]  D. Defourneau,et al.  Physics of IR emission by interstellar PAH molecules , 1989 .

[49]  K. Sellgren,et al.  The near-infrared continuum emission of visual reflection nebulae , 1984 .

[50]  P. Boulet,et al.  Absorption and emission spectroscopy of matrix-isolated benzo[g,h,i]perylene: An experimental and theoretical study for astrochemical applications , 2001 .

[51]  D. Hudgins,et al.  Interstellar PAH Emission in the 11-14 Micron Region: New Insightsfrom Laboratory Data and a Tracer of Ionized PAHs , 1999, The Astrophysical journal.

[52]  J. Bauschlicher INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS : NITROGEN SUBSTITUTION , 1998 .

[53]  T. Märk,et al.  Appearance energies of singly, doubly, and triply charged coronene and corannulene ions produced by electron impact , 2006 .

[54]  The infrared signatures of non-regular PAHs , 2002 .

[55]  K. Gordon,et al.  The Excitation of Extended Red Emission: New Constraints on Its Carrier from Hubble Space Telescope Observations of NGC 7023 , 2005, astro-ph/0509352.

[56]  Andrew T. Brown,et al.  Electron Affinities of Polycyclic Aromatic Hydrocarbons , 2001 .

[57]  S. M. Scarrott,et al.  Evidence for a link between the more prominent optical emission bands in the Red Rectangle and some of the diffuse interstellar absorption bands , 1992 .

[58]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[59]  G. Moreels,et al.  Detection of a polycyclic aromatic molecule in comet P/Halley , 1994 .

[60]  R N Zare,et al.  Identification of Complex Aromatic Molecules in Individual Interplanetary Dust Particles , 1993, Science.

[61]  George H. Herbig,et al.  The Diffuse Interstellar Bands , 1995 .

[62]  S. Leach Laboratory studies of polycyclic aromatic hydrocarbons, fullerenes and linear carbon chains in an astrophysical context , 1995 .

[63]  D. Hudgins,et al.  The Spacing of the Interstellar 6.2 and 7.7 Micron Emission Features as an Indicator of Polycyclic Aromatic Hydrocarbon Size , 1999, The Astrophysical journal.

[64]  R. Saykally,et al.  Single photon infrared emission spectroscopy of the gas phase pyrene cation: support for a polycyclic aromatic hydrocarbon origin of the unidentified infrared emission bands. , 2001, Physical review letters.

[65]  R. Zare,et al.  Application of Two-Step Laser Mass Spectrometry to Cosmogeochemistry: Direct Analysis of Meteorites , 1988, Science.

[66]  Jin-Young Park,et al.  Photoionization of Benzene and Small Polycyclic Aromatic Hydrocarbons in Ultraviolet-processed Astrophysical Ices: A Computational Study , 2004 .

[67]  S. Grimme,et al.  Ab initio theoretical study of the electronic absorption spectra of polycyclic aromatic hydrocarbon radical cations of naphthalene, anthracene and phenanthrene , 1995 .

[68]  A. Tielens,et al.  Theoretical Modeling of Infrared Emission from Neutral and Charged Polycyclic Aromatic Hydrocarbons. II. , 2001 .

[69]  M. Head‐Gordon,et al.  Time-dependent density functional study on the electronic excitation energies of polycyclic aromatic hydrocarbon radical cations of naphthalene, anthracene, pyrene, and perylene , 1999 .

[70]  S. Langhoff,et al.  The Calculation of Accurate Harmonic Frequencies of Large Molecules: The Polycyclic Aromatic Hydrocarbons, a Case Study , 1997 .

[71]  A. Tielens,et al.  The Effects of Polycyclic Aromatic Hydrocarbons on the Chemistry of Photodissociation Regions , 1998 .

[72]  Stacked clusters of polycyclic aromatic hydrocarbon molecules. , 2004, The journal of physical chemistry. A.

[73]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[74]  S. Sandford,et al.  Infrared Spectroscopy of Matrix Isolated Polycyclic Aromatic Hydrocarbons. 3. Fluoranthene and the Benzofluoranthenes , 1998 .

[75]  A. Tielens,et al.  Laboratory Infrared Spectroscopy of Cationic Polycyclic Aromatic Hydrocarbon Molecules , 2003 .

[76]  D. Hudgins,et al.  Infrared spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. 3. The polyacenes anthracene, tetracene, and pentacene. , 2013, The Journal of physical chemistry.

[77]  Diagnostics for specific PAHs in the far-IR: Searching neutral naphthalene and anthracene in the Red Rectangle , 2006, astro-ph/0605411.

[78]  P. Bréchignac,et al.  Laboratory spectra of cold gas phase polycyclic aromatic hydrocarbon cations, and their possible relation to the diffuse interstellar bands. , 2001, Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy.

[79]  Infrared Emission from Interstellar Dust. I. Stochastic Heating of Small Grains , 2000, astro-ph/0011318.

[80]  A. Pathak,et al.  Computational study of neutral and cationic catacondensed polycyclic aromatic hydrocarbons , 2005 .

[81]  Vincenzo Barone,et al.  Anharmonic vibrational properties by a fully automated second-order perturbative approach. , 2005, The Journal of chemical physics.

[82]  A. Tielens,et al.  Infrared Spectroscopy of Gas-Phase Complexes of Fe+ and Polycyclic Aromatic Hydrocarbon Molecules , 2006 .

[83]  D. Talbi,et al.  The 3.2–3.5 μm region revisited — I. A theoretical study of the effects of aliphatic substitution on some model PAHs , 1999 .

[84]  C. Andriesse Platt particles in M17 , 1978 .

[85]  G. Mulas,et al.  Theoretical electron affinities of PAHs and electronic absorption spectra of their mono-anions , 2005 .

[86]  K. Yoshizawa,et al.  Jahn–Teller effects in the coronene anions and cations , 1999 .

[87]  A. Pathak,et al.  Computational study of neutral and cationic pericondensed polycyclic aromatic hydrocarbons , 2006 .

[88]  A. Tielens,et al.  Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. , 1989, The Astrophysical journal. Supplement series.

[89]  Stefan Grimme,et al.  Density functional calculations of the vibronic structure of electronic absorption spectra. , 2004, The Journal of chemical physics.

[90]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[91]  Farid Salama,et al.  Cavity ring-down spectroscopy and vibronic activity of benzo[ghi]perylene. , 2005, The Journal of chemical physics.

[92]  S. Leach The formation and destruction of doubly-charged polycyclic aromatic hydrocarbon cations in the interstellar medium. , 1986 .

[93]  S. Sandford,et al.  Hydrogenated Polycyclic Aromatic Hydrocarbons and the 2940 and 2850 Wavenumber (3.40 and 3.51 micron) Infrared Emission Features , 1996, The Astrophysical journal.

[94]  C. Joblin,et al.  Absorption and emission spectroscopy of perylene (C20H12) isolated in Ne, Ar, and N2 matrices , 1999 .

[95]  S. Schlemmer,et al.  Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers. , 1998, The journal of physical chemistry. A.

[96]  Bertsch,et al.  Time-dependent local-density approximation in real time. , 1996, Physical review. B, Condensed matter.

[97]  G. Mulas,et al.  Testing the "strong" PAHs hypothesis. II. A quantitative link between DIBs and far-IR emission features , 2003 .

[98]  M. Head‐Gordon,et al.  Time-Dependent Density Functional Study of the Electronic Excited States of Polycyclic Aromatic Hydrocarbon Radical Ions , 2003 .

[99]  R. Liseau Star Formation With the Infrared Space Observatory , 1998 .

[100]  J. J. Scherer,et al.  Pulsed discharge nozzle cavity ringdown spectroscopy of cold polycyclic aromatic hydrocarbon ions , 2003 .

[101]  V. Bierbaum,et al.  Hydrogenation and Charge States of PAHs in Diffuse Clouds. I. Development of a Model , 2001 .

[102]  C. Joblin,et al.  Solid interstellar matter : the ISO revolution : Les Houches Workshop, February 2-6, 1998 , 1999 .

[103]  M. Head‐Gordon,et al.  Time-dependent Density Functional Theory Calculations of Large Compact Polycyclic Aromatic Hydrocarbon Cations: Implications for the Diffuse Interstellar Bands , 2003 .

[104]  Jan M. L. Martin,et al.  Structure and Vibrational Spectrum of Some Polycyclic Aromatic Compounds Studied by Density Functional Theory. 1. Naphthalene, Azulene, Phenanthrene, and Anthracene† , 1996 .

[105]  B. Foing,et al.  Spectroscopy of large PAHs Laboratory studies and comparison to the Diffuse Interstellar Bands , 2002 .

[106]  C. Joblin,et al.  Electronic absorption spectra of PAHs up to vacuum UV. Towards a detailed model of interstellar PAH photophysics , 2004 .

[107]  C. Joblin,et al.  D1(2B2g)→D0(2Au) fluorescence from the matrix-isolated perylene cation following laser excitation into the D5(2B3g) and D2(2B3g) electronic states , 2002 .

[108]  W. Duley A Plasmon Resonance in Dehydrogenated Coronene (C24Hx) and Its Cations and the Origin of the Interstellar Extinction Band at 217.5 Nanometers , 2006 .

[109]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[110]  B. Donn Polycyclic hydrocarbons, Platt particles, and interstellar extinction. , 1968 .

[111]  P. Bernath,et al.  Far-Infrared Emission Spectra of Selected Gas-Phase PAHs: Spectroscopic Fingerprints , 1996, Science.

[112]  F. Boulanger,et al.  Interstellar dust models for extinction and emission , 1990 .

[113]  A. Tielens The Physics and Chemistry of the Interstellar Medium , 2005 .

[114]  Angel Rubio,et al.  Electronic structure and excitations in oligoacenes from ab initio calculations. , 2006, The Journal of chemical physics.

[115]  L. Allamandola,et al.  Infrared spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. 4. The tetracyclic PAH isomers chrysene and 1,2-benzanthracene. , 1997, Journal of Physical Chemistry A.

[116]  T. Märk,et al.  Free-electron attachment to coronene and corannulene in the gas phase. , 2005, The Journal of chemical physics.

[117]  M. Vala,et al.  Infrared frequencies and intensities for astrophysically important polycyclic aromatic hydrocarbon cations , 1993 .

[118]  O. Parisel,et al.  Electronic and Vibrational Spectra Of Matrix-Isolated Pyrene Radical Cations: Theoretical and Experimental Aspects , 1994 .

[119]  Farid Salama,et al.  Cavity ring-down spectroscopy and theoretical calculations of the S1(1B3u)<--S0(1Ag) transition of jet-cooled perylene. , 2005, The Journal of chemical physics.

[120]  K. Gordon,et al.  Discovery of Blue Luminescence in the Red Rectangle: Possible Fluorescence from Neutral Polycyclic Aromatic Hydrocarbon Molecules? , 2004, astro-ph/0403522.

[121]  G. Mulas A MonteCarlo model of the rotation of a big, isolated molecule in the ISM , 1998 .

[122]  L. D'hendecourt,et al.  Are polycyclic aromatic hydrocarbons the carriers of the diffuse interstellar bands in the visible , 1985 .

[123]  J. Oomens,et al.  Gas Phase Infrared Spectroscopy of Cationic Indane, Acenaphthene, Fluorene, and Fluoranthene , 2001 .