Intrasystem Entanglement Generator and Unambiguos Bell States Discriminator on Chip

Bell measurements, jointly projecting two qubits onto the so-called Bell basis, constitute a crucial step in many quantum computation and communication protocols, including dense coding, quantum repeaters, and teleportation-based quantum computation. A problem is the impossibility of deterministic unambiguous Bell measurements using passive linear optics, even when arbitrarily many auxiliary photons, photon-number-resolving detectors, and dynamical (conditionally changing) networks are available. Current proposals for going over the 50% upper bound without using experimentally challenging nonlinearities rely on using entangled photon ancilla states and a sufficiently large interferometer to combine the signal and ancilla modes. We demonstrate that the novel Multiple Rail architecture, based on the propagation of a single photon in a complex multipath optical circuit (or multiwaveguide optical circuit), provides the possibility to perform deterministic Bell measurements so to unambiguously discrimate all four Bell States.

[1]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[2]  Doreen Eichel Experimental Issues In Coherent Quantum State Manipulation Of Trapped Atomic Ions , 2016 .

[3]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[4]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[5]  Daniel A Lidar,et al.  Simple proof of equivalence between adiabatic quantum computation and the circuit model. , 2007, Physical review letters.

[6]  B. Sanders,et al.  Focus on Single Photons on Demand , 2004 .

[7]  L-M Duan,et al.  Efficient quantum computation with probabilistic quantum gates. , 2005, Physical review letters.

[8]  Simon J. Devitt,et al.  Photonic module: An on-demand resource for photonic entanglement , 2007, 0706.2226.

[9]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[10]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[11]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[12]  K. Sanaka,et al.  Indistinguishable photons from independent semiconductor nanostructures. , 2009, Physical review letters.

[13]  R Laflamme,et al.  Spin based heat engine: demonstration of multiple rounds of algorithmic cooling. , 2007, Physical review letters.

[14]  M. W. Johnson,et al.  Experimental demonstration of a robust and scalable flux qubit , 2009, 0909.4321.

[15]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[16]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[17]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[18]  J. O'Brien Optical Quantum Computing , 2007, Science.

[19]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[20]  J J García-Ripoll,et al.  Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. , 2003, Physical review letters.

[21]  A. Imamoğlu,et al.  Giant Kerr nonlinearities obtained by electromagnetically induced transparency. , 1996, Optics letters.

[22]  A S Sørensen,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[23]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[24]  Peter W. Shor,et al.  Estimating Jones polynomials is a complete problem for one clean qubit , 2007, Quantum Inf. Comput..

[25]  J M Amini,et al.  Trapped-ion quantum logic gates based on oscillating magnetic fields. , 2008, Physical review letters.

[26]  A. Politi,et al.  Shor’s Quantum Factoring Algorithm on a Photonic Chip , 2009, Science.

[27]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[28]  M. Oberthaler,et al.  Dynamics of Bose-Einstein condensates in optical lattices , 2006 .

[29]  A. Shields Semiconductor quantum light sources , 2007, 0704.0403.

[30]  J. Wrachtrup,et al.  Multipartite Entanglement Among Single Spins in Diamond , 2008, Science.

[31]  David J. Wineland,et al.  Complete Methods Set for Scalable Ion Trap Quantum Information Processing , 2009, Science.

[32]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[33]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[34]  A. Politi,et al.  Manipulation of multiphoton entanglement in waveguide quantum circuits , 2009, 0911.1257.

[35]  G. Leuchs,et al.  Classical entanglement in polarization metrology , 2014, 1401.1543.

[36]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[37]  Dirk Englund,et al.  Controlled Phase Shifts with a Single Quantum Dot , 2008, Science.

[38]  P. Joyez,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[39]  P Zoller,et al.  Interfacing quantum-optical and solid-state qubits. , 2004, Physical review letters.

[40]  S. Prawer,et al.  Room temperature triggered single-photon source in the near infrared , 2007, 0708.1878.