Generation of bivalent chromatin domains during cell fate decisions

[1]  Jonathan M. Monk,et al.  Wdr5 Mediates Self-Renewal and Reprogramming via the Embryonic Stem Cell Core Transcriptional Network , 2011, Cell.

[2]  B. Bernstein,et al.  Role for Dpy-30 in ES Cell-Fate Specification by Regulation of H3K4 Methylation within Bivalent Domains , 2011, Cell.

[3]  Mazhar Adli,et al.  Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors , 2010, Nature Methods.

[4]  Richard A Young,et al.  Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. , 2010, Molecular cell.

[5]  Mikael Sigvardsson,et al.  Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells. , 2010, Blood.

[6]  D. Higgs,et al.  Chromosome looping at the human alpha-globin locus is mediated via the major upstream regulatory element (HS -40). , 2009, Blood.

[7]  A. Pombo,et al.  Modifications of RNA polymerase II are pivotal in regulating gene expression states , 2009, EMBO reports.

[8]  Caroline M. Jakuba,et al.  Single-cell transcript analysis of human embryonic stem cells. , 2009, Integrative biology : quantitative biosciences from nano to macro.

[9]  Dustin E. Schones,et al.  Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. , 2009, Cell stem cell.

[10]  I. Dunham,et al.  The role of the polycomb complex in silencing alpha-globin gene expression in nonerythroid cells. , 2008, Blood.

[11]  Simon Kasif,et al.  Genomewide Analysis of PRC1 and PRC2 Occupancy Identifies Two Classes of Bivalent Domains , 2008, PLoS genetics.

[12]  Terry Magnuson,et al.  Polycomb Repressive Complex 2 Is Dispensable for Maintenance of Embryonic Stem Cell Pluripotency , 2008, Stem cells.

[13]  Daniel J. Hoeppner,et al.  Global transcription in pluripotent embryonic stem cells. , 2008, Cell stem cell.

[14]  M. van Lohuizen,et al.  Stem cell regulation by polycomb repressors: postponing commitment. , 2008, Current opinion in cell biology.

[15]  I. Dunham,et al.  Tissue-specific histone modification and transcription factor binding in alpha globin gene expression. , 2007, Blood.

[16]  G. Pan,et al.  Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. , 2007, Cell stem cell.

[17]  Atif Shahab,et al.  Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. , 2007, Cell stem cell.

[18]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[19]  R. Young,et al.  A Chromatin Landmark and Transcription Initiation at Most Promoters in Human Cells , 2007, Cell.

[20]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[21]  Shamit Soneji,et al.  Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. , 2007, Immunity.

[22]  D. Higgs,et al.  Long‐range chromosomal interactions regulate the timing of the transition between poised and active gene expression , 2007 .

[23]  Douglas R Higgs,et al.  Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. , 2007, The EMBO journal.

[24]  Suresh Cuddapah,et al.  The genomic landscape of histone modifications in human T cells , 2006, Proceedings of the National Academy of Sciences.

[25]  Christopher R. Vakoc,et al.  Profile of Histone Lysine Methylation across Transcribed Mammalian Chromatin , 2006, Molecular and Cellular Biology.

[26]  J. Zeitlinger,et al.  Polycomb complexes repress developmental regulators in murine embryonic stem cells , 2006, Nature.

[27]  James A. Cuff,et al.  A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells , 2006, Cell.

[28]  Stephan Sauer,et al.  Chromatin signatures of pluripotent cell lines , 2006, Nature Cell Biology.

[29]  Veronica J. Buckle,et al.  Coregulated human globin genes are frequently in spatial proximity when active , 2006, The Journal of cell biology.

[30]  S. Prabhakar,et al.  Annotation of cis-regulatory elements by identification, subclassification, and functional assessment of multispecies conserved sequences. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  G. Blobel,et al.  Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA‐1 and GATA‐2 , 2004, The EMBO journal.

[32]  J. Raser,et al.  Control of Stochasticity in Eukaryotic Gene Expression , 2004, Science.

[33]  Charles Kooperberg,et al.  The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. , 2004, Genes & development.

[34]  Y. T. Lee,et al.  A signaling mechanism for growth-related expression of fetal hemoglobin. , 2004, Blood.

[35]  K. Chin,et al.  Two‐phase liquid culture system models normal human adult erythropoiesis at the molecular level , 2000, European journal of haematology.

[36]  M. Greaves,et al.  Multilineage gene expression precedes commitment in the hemopoietic system. , 1997, Genes & development.

[37]  A. Bird,et al.  Non‐methylated CpG‐rich islands at the human alpha‐globin locus: implications for evolution of the alpha‐globin pseudogene. , 1987, The EMBO journal.

[38]  M. Cam,et al.  Anewly discovered human -globin gene , 2013 .

[39]  K. Helin,et al.  Epigenetic control of embryonic stem cell fate , 2010, The Journal of experimental medicine.