Predictive coding using noncausal models

A novel image compression algorithm is presented. The algorithm combines the recursive processing characteristic of predictive coding with the use of a noncausal image model. Experimental results demonstrate the high quality of the reconstructed image at a low bit rate (0.375 bit/pixel). This contrasts with the significant loss of detail and blocking artifacts introduced by a JPEG (Joint Photographic Experts Group) type DCT (discrete cosine transform) method at the same bit rate.<<ETX>>

[1]  Nikhil Balram,et al.  Recursive structure of noncausal Gauss-Markov random fields , 1992, IEEE Trans. Inf. Theory.

[2]  John W. Woods,et al.  Two-dimensional discrete Markovian fields , 1972, IEEE Trans. Inf. Theory.

[3]  N. Balram,et al.  Recursive enhancement of noncausal images , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[4]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[5]  N. Balram,et al.  Parameter estimation in 2D fields , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[6]  N. Balram,et al.  Noncausal Gauss Markov random fields: Parameter structure and estimation , 1993, IEEE Trans. Inf. Theory.

[7]  P. W. Jones,et al.  Digital Image Compression Techniques , 1991 .