Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber.

A lithium niobate on an insulator ridge waveguide allows constructing high-density photonic integrated circuits thanks to its small bending radius offered by the high index contrast. Meanwhile, the significant mode-field mismatch between an optical fiber and the single-mode lithium niobate waveguide leads to low coupling efficiencies. Here, we demonstrate, both numerically and experimentally, that the problem can be solved with a tapered single mode fiber of an optimized mode field profile. Numerical simulation shows that the minimum coupling losses for the TE and TM mode are 0.32 dB and 0.86 dB, respectively. Experimentally, though without anti-reflection coating, the measured coupling losses for TE and TM mode are 1.32 dB and 1.88 dB, respectively. Our technique paves a way for a broad range of on-chip lithium niobate applications.

[1]  Limin Tong,et al.  Ultrahigh-Precision Diameter Control of Nanofiber Using Direct Mode Cutoff Feedback , 2020, IEEE Photonics Technology Letters.

[2]  Ya Cheng,et al.  High-Precision Propagation-Loss Measurement of Single-Mode Optical Waveguides on Lithium Niobate on Insulator , 2019, Micromachines.

[3]  Ya Cheng,et al.  Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk. , 2019, Optics letters.

[4]  Y. Kong,et al.  Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On‐Chip Devices , 2019, Advanced materials.

[5]  S. Gong,et al.  Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate. , 2019, Optics express.

[6]  G. Piazza,et al.  Low-loss chirped grating for vertical light coupling in lithium niobate on insulator , 2019, Journal of Optics.

[7]  Ya Cheng,et al.  Broadband Quasi-Phase-Matched Harmonic Generation in an On-Chip Monocrystalline Lithium Niobate Microdisk Resonator. , 2019, Physical review letters.

[8]  Lishuang Feng,et al.  Heterogeneous integration of LN and Si3N4 waveguides using an optical interlayer coupler , 2019, Optics Communications.

[9]  A. Peruzzo,et al.  High coupling efficiency grating couplers on lithium niobate on insulator. , 2019, Optics express.

[10]  A. Shams-Ansari,et al.  Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. , 2019, Optics Letters.

[11]  Qiang Lin,et al.  A self-starting bi-chromatic LiNbO3 soliton microcomb , 2018, 1812.09610.

[12]  Q. Lin,et al.  Optical Parametric Generation in a Lithium Niobate Microring with Modal Phase Matching , 2018, Physical Review Applied.

[13]  Joseph M. Kahn,et al.  Broadband electro-optic frequency comb generation in a lithium niobate microring resonator , 2018, Nature.

[14]  Ya Cheng,et al.  Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness , 2018, Nanomaterials.

[15]  P. Winzer,et al.  Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages , 2018, Nature.

[16]  Gabriel M. Rebeiz,et al.  Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. , 2018, Optics express.

[17]  Q. Lin,et al.  Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities , 2018, Applied Physics Letters.

[18]  Ya Cheng,et al.  Lithium niobate micro-disk resonators of quality factors above 107. , 2018, Optics letters.

[19]  Arnan Mitchell,et al.  Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits , 2018 .

[20]  Anthony L. Lentine,et al.  Hybrid Silicon Photonic – Lithium Niobate Electro-Optic Mach-Zehnder Modulator Beyond 100 GHz , 2018 .

[21]  Alberto Peruzzo,et al.  Ultra-low loss photonic circuits in lithium niobate on insulator. , 2017, Optics express.

[22]  Qiang Lin,et al.  On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. , 2017, Optics express.

[23]  Xianfeng Chen,et al.  Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk. , 2017, Optics letters.

[24]  Q. Lin,et al.  High-quality lithium niobate photonic crystal nanocavities , 2017, 1706.08904.

[25]  Limin Tong,et al.  Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision. , 2017, Optics express.

[26]  Dennis W Prather,et al.  110 GHz CMOS compatible thin film LiNbO3 modulator on silicon. , 2016, Optics express.

[27]  Ya Cheng,et al.  Phase-Matched Second-Harmonic Generation in an On-Chip L i NbO 3 Microresonator , 2016 .

[28]  John E. Bowers,et al.  Thin film wavelength converters for photonic integrated circuits , 2016 .

[29]  Junjie Li,et al.  High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. , 2015, Optics express.

[30]  Sasan Fathpour,et al.  Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. , 2015, Optics express.

[31]  Ya Cheng,et al.  Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining , 2015, Scientific Reports.

[32]  M. Wood,et al.  Hybrid silicon and lithium niobate electro-optical ring modulator , 2014 .

[33]  Huiying Hu,et al.  Lithium niobate on insulator (LNOI) for micro‐photonic devices , 2012 .

[34]  Daniele Rezzonico,et al.  Electro–optically tunable microring resonators in lithium niobate , 2007, 0705.2392.