An integro-PDE model with variable motility

Abstract This paper is concerned with a nonlocal reaction–diffusion–mutation model. It involves the spatial variable and a trait variable which govern the spatial diffusion of species. By establishing comparison principle and constructing monotone iterative sequence, we have proved the existence of solution to Cauchy problem. Then, based on the quasi-elementary solution, auxiliary equation and method of successive improvement of upper and lower solutions, the solutions are shown to be unique, bounded and globally stable.

[1]  H. Berestycki,et al.  Propagation in a non local reaction diffusion equation with spatial and genetic trait structure , 2014, 1411.2019.

[2]  Shu Wang,et al.  Nonrelativistic approximation in the energy space for KGS system , 2018, Journal of Mathematical Analysis and Applications.

[3]  L. Ryzhik,et al.  Super-linear spreading in local and non-local cane toads equations , 2015, 1512.07793.

[4]  A. Arnold,et al.  Existence of nontrivial steady states for populations structured with respect to space and a continuous trait , 2011 .

[5]  J. Gossez,et al.  Nonhomogeneous Dirichlet problems for the p-Laplacian , 2017 .

[6]  Zhi-Cheng Wang,et al.  Traveling wave solutions in a nonlocal reaction-diffusion population model , 2016 .

[7]  Richard Shine,et al.  Invasion and the evolution of speed in toads , 2006, Nature.

[8]  King-Yeung Lam Stability of Dirac concentrations in an integro-PDE model for evolution of dispersal , 2017 .

[9]  O. Turanova On a model of a population with variable motility , 2014, 1409.4679.

[10]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[11]  S. Mirrahimi,et al.  A Hamilton-Jacobi approach for a model of population structured by space and trait , 2013, 1307.8332.

[12]  John Billingham,et al.  Dynamics of a strongly nonlocal reaction–diffusion population model , 2004 .

[13]  G. Raoul,et al.  Travelling Waves in a Nonlocal Reaction-Diffusion Equation as a Model for a Population Structured by a Space Variable and a Phenotypic Trait , 2012 .

[14]  Nicholas F. Britton,et al.  Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model , 1990 .

[15]  Henri Berestycki,et al.  The non-local Fisher–KPP equation: travelling waves and steady states , 2009 .

[16]  Zhi-Cheng Wang,et al.  Turing Patterns of a Lotka-Volterra Competitive System with Nonlocal Delay , 2018, Int. J. Bifurc. Chaos.

[17]  Ying-Hui Yang,et al.  On a predator-prey reaction-diffusion model with nonlocal effects , 2017, Commun. Nonlinear Sci. Numer. Simul..

[18]  Y. Lou,et al.  An integro-PDE model for evolution of random dispersal , 2015, 1506.00662.

[19]  Fordyce A. Davidson,et al.  Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation , 2001 .

[20]  E. Bouin,et al.  Super-linear spreading in local bistable cane toads equations , 2016, 1604.00237.

[21]  K. Deng,et al.  On a nonlocal reaction-diffusion population model , 2007 .

[22]  B. Perthame,et al.  Invasion fronts with variable motility: Phenotype selection, spatial sorting and wave acceleration , 2012, 1207.2355.

[23]  Sílvia Cuadrado,et al.  Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics , 2004, Journal of mathematical biology.

[24]  N. Britton Aggregation and the competitive exclusion principle. , 1989, Journal of Theoretical Biology.

[25]  Keng Deng,et al.  Global stability for a nonlocal reaction–diffusion population model , 2015 .

[26]  Yixiang Wu,et al.  Asymptotic behavior for a reaction-diffusion population model with delay , 2015 .

[27]  O Bénichou,et al.  Front acceleration by dynamic selection in Fisher population waves. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  V. Calvez,et al.  Travelling waves for the cane toads equation with bounded traits , 2013, 1309.4755.