Stochastic Modeling of the Behavior of Dynein

[1]  K. Johnson The pathway of ATP hydrolysis by dynein. Kinetics of a presteady state phosphate burst. , 1983, The Journal of biological chemistry.

[2]  K. Johnson,et al.  Presteady state kinetic analysis of vanadate-induced inhibition of the dynein ATPase. , 1983, Journal of Biological Chemistry.

[3]  D. Lemons,et al.  Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)] , 1997 .

[4]  K. Johnson Pathway of the microtubule-dynein ATPase and the structure of dynein: a comparison with actomyosin. , 1985, Annual Review of Biophysics and Biophysical Chemistry.

[5]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .

[6]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[7]  T. Yagi ADP-dependent microtubule translocation by flagellar inner-arm dyneins. , 2000, Cell structure and function.

[8]  Y. Toyoshima,et al.  Regulation of monomeric dynein activity by ATP and ADP concentrations. , 2001, Cell motility and the cytoskeleton.

[9]  W. Sale,et al.  Direction of force generated by the inner row of dynein arms on flagellar microtubules , 1987, The Journal of cell biology.

[10]  I R Gibbons,et al.  Dynein ATPases as microtubule motors. , 1988, The Journal of biological chemistry.

[11]  M. Porter,et al.  Transient state kinetic analysis of the ATP-induced dissociation of the dynein-microtubule complex. , 1983, The Journal of biological chemistry.

[12]  T. Tani,et al.  Dynein-ADP as a force-generating intermediate revealed by a rapid reactivation of flagellar axoneme. , 1999, Biophysical journal.

[13]  Scott T. Brady,et al.  A novel brain ATPase with properties expected for the fast axonal transport motor , 1985, Nature.

[14]  E. Holzbaur,et al.  Microtubules accelerate ADP release by dynein. , 1989, Biochemistry.

[15]  Stochastic simulation of processive and oscillatory sliding using a two-headed model for axonemal dynein. , 2000, Cell motility and the cytoskeleton.

[16]  H. L. Dryden,et al.  Investigations on the Theory of the Brownian Movement , 1957 .

[17]  K. Johnson,et al.  Kinetic evidence for multiple dynein ATPase sites. , 1983, The Journal of biological chemistry.

[18]  A. Silvanovich,et al.  The third P-loop domain in cytoplasmic dynein heavy chain is essential for dynein motor function and ATP-sensitive microtubule binding. , 2003, Molecular biology of the cell.

[19]  T. Elston,et al.  A model for the oscillatory motion of single dynein molecules. , 2005, Journal of theoretical biology.

[20]  Ronald D. Vale,et al.  Aaa Proteins , 2000, The Journal of cell biology.

[21]  E V Koonin,et al.  AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. , 1999, Genome research.

[22]  C. Omoto,et al.  Activation of the dynein adenosinetriphosphatase by microtubules. , 1986, Biochemistry.

[23]  W. Sale,et al.  Direction of active sliding of microtubules in Tetrahymena cilia. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Toshio Yanagida,et al.  Dynein arms are oscillating force generators , 1998, Nature.

[25]  G. Mocz,et al.  Phase partition analysis of nucleotide binding to axonemal dynein. , 1996, Biochemistry.

[26]  Daniel T. Gillespie,et al.  Approximating the master equation by Fokker–Planck‐type equations for single‐variable chemical systems , 1980 .

[27]  S. Burgess,et al.  Dynein structure and power stroke , 2003, Nature.

[28]  D. Gillespie A rigorous derivation of the chemical master equation , 1992 .

[29]  J. Spudich,et al.  Detection of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Rowe,et al.  Dynein: A Protein with Adenosine Triphosphatase Activity from Cilia , 1965, Science.

[31]  M. Schnitzer,et al.  Force production by single kinesin motors , 2000, Nature Cell Biology.

[32]  R. Vallee,et al.  MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties , 1987, The Journal of cell biology.

[33]  Y. Chen Theoretical formalism for kinesin motility I. Bead movement powered by single one-headed kinesins. , 2000, Biophysical journal.

[34]  Richard B. Vallee,et al.  An extended microtubule-binding structure within the dynein motor domain , 1997, Nature.

[35]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[36]  R. Brown XXVII. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies , 1828 .

[37]  Daniel T. Gillespie,et al.  The multivariate Langevin and Fokker–Planck equations , 1996 .

[38]  Michael P. Sheetz,et al.  Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility , 1985, Cell.

[39]  Samara L. Reck-Peterson,et al.  Molecular dissection of the roles of nucleotide binding and hydrolysis in dynein's AAA domains in Saccharomyces cerevisiae. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Steven M. Block,et al.  Making light work with optical tweezers , 1992, Nature.

[41]  T. Hays,et al.  Evidence for cooperative interactions between the two motor domains of cytoplasmic dynein , 1999, Current Biology.

[42]  R. Vale,et al.  Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia , 1988, Cell.

[43]  R. Kamiya,et al.  Slow ADP‐dependent acceleration of microtubule translocation produced by an axonemal dynein , 2004, FEBS Letters.

[44]  R. Patel-King,et al.  Identification of a Ca(2+)-binding light chain within Chlamydomonas outer arm dynein. , 1995, Journal of cell science.

[45]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[46]  D. Gillespie Markov Processes: An Introduction for Physical Scientists , 1991 .

[47]  G. Mocz,et al.  Probing the nucleotide binding sites of axonemal dynein with the fluorescent nucleotide analogue 2'(3')-O-(-N-Methylanthraniloyl)-adenosine 5'-triphosphate. , 1998, Biochemistry.

[48]  J. Frank,et al.  Structural characterization of a dynein motor domain. , 1998, Journal of molecular biology.

[49]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[50]  T. Elston,et al.  A robust numerical algorithm for studying biomolecular transport processes. , 2003, Journal of theoretical biology.

[51]  M. Schnitzer,et al.  Statistical kinetics of processive enzymes. , 1995, Cold Spring Harbor symposia on quantitative biology.