A Social Choice Analysis of the Borda Rule in a General Linguistic Framework

In this paper the Borda rule is extended by allowing the voters to show their preferences among alternatives through linguistic labels. To this aim, we need to add them up for assigning a qualification to each alternative and then to compare such qualifications. Theoretically, all these assessments and comparisons fall into a totally ordered commutative monoid generated by the initial set of linguistic labels. Practically, we show an example which illustrates the suitability of this linguistic approach. Finally, some interesting properties for this Borda rule are proven in the Social Choice context.

[1]  F. Herrera,et al.  A linguistic decision process in group decision making , 1996 .

[2]  Arnold B. Urken,et al.  Classics of social choice , 1995 .

[3]  Bonifacio Llamazares,et al.  Linguistic Matrix Aggregation Operators: Extensions of the Borda Rule , 2006 .

[4]  Thierry Marchant,et al.  Does the Borda rule provide more than a ranking? , 2000, Soc. Choice Welf..

[5]  Enric Trillas,et al.  On antonym and negate in fuzzy logic , 1999, Int. J. Intell. Syst..

[6]  Michael Dummett,et al.  The Borda count and agenda manipulation , 1998 .

[7]  H. Young Social Choice Scoring Functions , 1975 .

[8]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[9]  M. Amparo Vila,et al.  On a canonical representation of fuzzy numbers , 1998, Fuzzy Sets Syst..

[10]  Kenneth O. May,et al.  A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decision , 1952 .

[11]  T. Marchant Valued relations aggregation with the borda method , 1996 .

[12]  Peter C. Fishburn,et al.  Axioms for approval voting: Direct proof , 1978 .

[13]  L. A. ZADEH,et al.  The concept of a linguistic variable and its application to approximate reasoning - I , 1975, Inf. Sci..

[14]  H. Nurmi Approaches to collective decision making with fuzzy preference relations , 1981 .

[15]  D. Saari Explaining All Three-Alternative Voting Outcomes , 1999 .

[16]  Francisco Herrera,et al.  Theory and Methodology Choice functions and mechanisms for linguistic preference relations , 2000 .

[17]  Duncan Black,et al.  Partial justification of the Borda count , 1976 .

[18]  Francisco Herrera,et al.  Linguistic decision analysis: steps for solving decision problems under linguistic information , 2000, Fuzzy Sets Syst..

[19]  D. Saari Decisions and elections : explaining the unexpected , 2001 .

[20]  Slawomir Zadrozny,et al.  How to Support Consensus Reaching Using Action Rules: a Novel Approach , 2010, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[21]  W. Riker,et al.  Liberalism Against Populism: A Confrontation Between the Theory of Democracy and the Theory of Social Choice , 1982 .

[22]  Joseph Malkevitch,et al.  Mathematical Theory of Elections , 1990 .

[23]  D. Saari Basic Geometry of Voting , 1995 .

[24]  P. Fishburn Multiperson Decision Making: A Selective Review , 1990 .

[25]  D. Dubois,et al.  FUZZY NUMBERS: AN OVERVIEW , 1993 .

[26]  Ronald R. Yager,et al.  Non-numeric multi-criteria multi-person decision making , 1993 .

[27]  G. Thompson,et al.  The Theory of Committees and Elections. , 1959 .

[28]  P. Fishburn,et al.  Voting Procedures , 2022 .

[29]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[30]  Ronald R. Yager,et al.  On the retranslation process in Zadeh's paradigm of computing with words , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[31]  José Luis García-Lapresta,et al.  A general class of simple majority decision rules based on linguistic opinions , 2006, Inf. Sci..

[32]  Peter Gärdenfors Positionalist voting functions , 1973 .

[33]  Bonifacio Llamazares,et al.  Aggregation of fuzzy preferences: Some rules of the mean , 2000, Soc. Choice Welf..

[34]  Vicenç Torra,et al.  Aggregation of linguistic labels when semantics is based on antonyms , 2001, Int. J. Intell. Syst..

[35]  H. Nurmi Comparing Voting Systems , 1987 .

[36]  José Luis García-Lapresta,et al.  A Fuzzy Borda Count in Multi-person Decision Making , 2002 .

[37]  J. García-Lapresta,et al.  A GROUP DECISION MAKING METHOD USING FUZZY TRIANGULAR NUMBERS , 2001 .

[38]  José Luis García-Lapresta,et al.  Defining the Borda count in a linguistic decision making context , 2009, Inf. Sci..

[39]  H. Young,et al.  A Consistent Extension of Condorcet’s Election Principle , 1978 .

[40]  José Luis García-Lapresta,et al.  Borda Count Versus Approval Voting: A Fuzzy Approach , 2002 .