Cross-Layer Based Opportunistic MAC Protocols for QoS Provisionings Over Cognitive Radio Wireless Networks

We propose the cross-layer based opportunistic multi-channel medium access control (MAC) protocols, which integrate the spectrum sensing at physical (PHY) layer with the packet scheduling at MAC layer, for the wireless ad hoc networks. Specifically, the MAC protocols enable the secondary users to identify and utilize the leftover frequency spectrum in a way that constrains the level of interference to the primary users. In our proposed protocols, each secondary user is equipped with two transceivers. One transceiver is tuned to the dedicated control channel, while the other is designed specifically as a cognitive radio that can periodically sense and dynamically use the identified un-used channels. To obtain the channel state accurately, we propose two collaborative channel spectrum-sensing policies, namely, the random sensing policy and the negotiation-based sensing policy, to help the MAC protocols detect the availability of leftover channels. Under the random sensing policy, each secondary user just randomly selects one of the channels for sensing. On the other hand, under the negotiation-based sensing policy, different secondary users attempt to select the distinct channels to sense by overhearing the control packets over the control channel. We develop the Markov chain model and the M/GY/1-based queueing model to characterize the performance of our proposed multi-channel MAC protocols under the two types of channel-sensing policies for the saturation network and the non-saturation network scenarios, respectively. In the non-saturation network case, we quantitatively identify the tradeoff between the aggregate traffic throughput and the packet transmission delay, which can provide the insightful guidelines to improve the delay-QoS provisionings over cognitive radio wireless networks.

[1]  R.W. Brodersen,et al.  Implementation issues in spectrum sensing for cognitive radios , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[2]  C. D. Litton,et al.  A First Course in Bulk Queues , 1983 .

[3]  A. M. Abdullah,et al.  Wireless lan medium access control (mac) and physical layer (phy) specifications , 1997 .

[4]  C.-C. Jay Kuo,et al.  A Cognitive MAC Protocol Using Statistical Channel Allocation for Wireless Ad-Hoc Networks , 2007, 2007 IEEE Wireless Communications and Networking Conference.

[5]  L. Kleinrock,et al.  Packet Switching in Radio Channels: Part I - Carrier Sense Multiple-Access Modes and Their Throughput-Delay Characteristics , 1975, IEEE Transactions on Communications.

[6]  Q. Zhao,et al.  Decentralized cognitive mac for dynamic spectrum access , 2005, First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005..

[7]  G. Brière,et al.  Computational analysis of single-server bulk-service queues, M/GY / 1 , 1989, Advances in Applied Probability.

[8]  Fouad A. Tobagi,et al.  Towards Performance Modeling of IEEE 802.11 Based Wireless Networks: A Unified Framework and Its Applications , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[9]  Hang Su,et al.  Opportunistic MAC Protocols for Cognitive Radio Based Wireless Networks , 2007, 2007 41st Annual Conference on Information Sciences and Systems.

[10]  Joseph Mitola,et al.  Cognitive Radio An Integrated Agent Architecture for Software Defined Radio , 2000 .

[11]  C. Cordeiro,et al.  C-MAC: A Cognitive MAC Protocol for Multi-Channel Wireless Networks , 2007, 2007 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks.

[12]  Ananthram Swami,et al.  Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework , 2007, IEEE Journal on Selected Areas in Communications.

[13]  M. L. Chaudhry,et al.  A first course in bulk queues , 1983 .

[14]  A. Mishra,et al.  A Multi-channel MAC for Opportunistic Spectrum Sharing in Cognitive Networks , 2006, MILCOM 2006 - 2006 IEEE Military Communications conference.

[15]  Sanjay Gupta,et al.  Performance modeling of asynchronous data transfer methods of IEEE 802.11 MAC protocol , 1997, Wirel. Networks.

[16]  Sai Shankar Nandagopalan,et al.  IEEE 802.22: An Introduction to the First Wireless Standard based on Cognitive Radios , 2006, J. Commun..

[17]  Simon Haykin,et al.  Cognitive radio: brain-empowered wireless communications , 2005, IEEE Journal on Selected Areas in Communications.

[18]  Ian F. Akyildiz,et al.  NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey , 2006, Comput. Networks.

[19]  L. Ma,et al.  Dynamic open spectrum sharing MAC protocol for wireless ad hoc networks , 2005, First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005..

[20]  Patrick Mitran,et al.  Limits on communications in a cognitive radio channel , 2006, IEEE Communications Magazine.