Studies of Semiconductor Quantum Dots for Quantum Information Processing

In recent years, quantum information processing is of great theoretical and experimental interest. This new scientific field appears for people to devise and implement quantum-coherent strategies for computation and communication etc. A practical realization of a quantum computer would be quite significant, since there exist theoretical quantum algorithms which would make some classically hard computational problems tractable. Quantum communication is technologically very prospective because it offers the promise of private communication with unbreakable security assured by the laws of quantum mechanics. Quantum computation encompasses almost every possible quantum phenomenon in nature, so that it can be physically realized in many systems such as optical cavity, ion trap, superconductor, nuclear spin and electron spin [1]. However, serious conditions such as scalable quantum bit (qubit) system, initialization ability, long coherence time, universal gates and quantum measurement capability must be simultaneously satisfied for quantum computation [2]. Semiconductor quantum

[1]  D. Deppe,et al.  Electron and hole tunneling in a moderate density quantum dot ensemble with shallow confinement potentials , 1998 .

[2]  R. Feenstra,et al.  Tunneling spectroscopy of the (110) surface of direct-gap III-V semiconductors. , 1994, Physical review. B, Condensed matter.

[3]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[4]  Y. Okada,et al.  Precisely ordered quantum dot array formed using AFM lithography for all-optical electron spin quantum computers , 2003 .

[5]  T. Jones,et al.  Role of two- and three-dimensional surface structures in InAs-GaAs(001) quantum dot nucleation , 2002 .

[6]  Gerald F. Dionne,et al.  Molecular‐field coefficients of Ti4+‐ and Zn2+‐ substituted lithium ferrites , 1974 .

[7]  U. Banin,et al.  Scanning tunneling spectroscopy of InAs nanocrystal quantum dots , 2000 .

[8]  D. Ritchie,et al.  Microcavity single-photon-emitting diode , 2005 .

[9]  Naoki Yokoyama,et al.  Controlling emission wavelength from InAs self-assembled quantum dots on InP (001) during MOCVD , 2005 .

[10]  R. H. Brown,et al.  The Question of Correlation between Photons in Coherent Light Rays , 1956, Nature.

[11]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[12]  N. Yokoyama,et al.  Role of thin InP cap layer and anion exchange reaction on structural and optical properties of InAs quantum dots on InP (001) , 2005 .

[13]  F. Laruelle,et al.  Single photon emission from individual GaAs quantum dots , 2003 .

[14]  M. S. Skolnick,et al.  Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. , 2000, Physical review letters.

[15]  Y. Okada,et al.  Scanning tunneling microscope study of capped quantum dots , 2004 .

[16]  J. Pendry,et al.  Quantum well resonances in scanning tunneling microscopy , 1993 .

[17]  N. Yokoyama,et al.  Observation of Exciton Transition in 1.3–1.55 µm Band from Single InAs/InP Quantum Dots in Mesa Structure , 2004 .

[18]  Toshio Ohshima All-optical electron spin quantum computer with ancilla bits for operations in each coupled-dot cell , 2000 .

[19]  M. Henini,et al.  Stark shift in electroluminescence of individual InAs quantum dots , 2000 .

[20]  Yasuhiko Arakawa,et al.  Single-Photon Generation in the 1.55-µm Optical-Fiber Band from an InAs/InP Quantum Dot , 2005 .

[21]  P. Petroff,et al.  Temperature influence on optical charging of self-assembled InAs/GaAs semiconductor quantum dots , 2001 .

[22]  M. Ciorga,et al.  Families of islands in InAs/InP self-assembled quantum dots: a census obtained from magneto-photoluminescence , 2003 .

[23]  W. Ge,et al.  Role of arsenic clusters in carrier recombination in low-temperature grown AlGaAs/GaAs multiple quantum wells , 1998 .

[24]  David A. Williams,et al.  Electrically pumped single-photon sources in lateral p-i-n junctions , 2004 .

[25]  Y. Okada,et al.  In-plane photocurrent of self-assembled In x Ga 1 − x A s / G a A s ( 311 ) B quantum dot arrays , 2001 .

[26]  A. Forchel,et al.  Quantum optical studies on individual acceptor bound excitons in a semiconductor. , 2002, Physical review letters.

[27]  N. Gisin,et al.  Long-distance teleportation of qubits at telecommunication wavelengths , 2003, Nature.

[28]  Yasuhiko Arakawa,et al.  Over 1.5 μm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition , 2001 .

[29]  C. Heyn Stability of InAs quantum dots , 2002 .

[30]  Martelli,et al.  Self-aggregation of quantum dots for very thin InAs layers grown on GaAs. , 1996, Physical review. B, Condensed matter.

[31]  S. Iwamoto,et al.  Development of Electrically Driven Single-Quantum-Dot Device at Optical Fiber Bands , 2006, Japanese Journal of Applied Physics.

[32]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[33]  Shigeo Sugou,et al.  Carrier relaxation dynamics in InP quantum dots studied by artificial control of nonradiative losses , 2000 .

[34]  G. Salamo,et al.  Photoluminescence linewidths from multiple layers of laterally self-ordered InGaAs quantum dots , 2005 .

[35]  W. Moerner,et al.  Single photons on demand from a single molecule at room temperature , 2000, Nature.

[36]  Val Zwiller,et al.  Growth and characterization of single quantum dots emitting at 1300 nm , 2005 .

[37]  Y. Okada,et al.  Isolated and close-packed In0.4Ga0.6As/GaAs (311)B quantum dots , 2000 .

[38]  Torino,et al.  Electro-optical properties of semiconductor quantum dots: Application to quantum information processing , 2001, cond-mat/0108334.

[39]  K. Itoh,et al.  Site selective growth of Ge quantum dots on AFM-patterned Si substrates , 2004 .

[40]  E. Kapon,et al.  Single-Photon Emission from Site-Controlled Pyramidal Quantum Dots , 2004 .

[41]  Harris,et al.  Vertically aligned and electronically coupled growth induced InAs islands in GaAs. , 1996, Physical review letters.

[42]  A. Gorbatchev,et al.  Improvement on the InAs quantum dot size distribution employing high-temperature GaAs(100) substrate treatment , 2004 .

[43]  Y. Okada,et al.  Growth process of quantum dots precisely controlled by an AFM-assisted technique , 2004 .

[44]  D. Awschalom,et al.  Semiconductor spintronics and quantum computation , 2002 .

[45]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[46]  Yoshiaki Nakata,et al.  Site-controlled photoluminescence at telecommunication wavelength from InAs∕InP quantum dots , 2005 .

[47]  Niclas Carlsson,et al.  Mean-Field Theory of Quantum Dot Formation , 1997 .

[48]  Y. Okada,et al.  Self-organized InGaAs quantum dots on GaAs (311)B studied by conductive atomic force microscope tip , 2001 .

[49]  D. Ritchie,et al.  Single quantum dot electroluminescence near 1.3 mu m , 2004 .

[50]  Johann Peter Reithmaier,et al.  Magneto-optical investigations of single self-assembled InAs/InGaAlAs quantum dashes , 2003 .

[51]  Philip J. Poole,et al.  Optical spectroscopy of single, site-selected, InAs/InP self-assembled quantum dots , 2004 .

[52]  Barenco,et al.  Conditional Quantum Dynamics and Logic Gates. , 1995, Physical review letters.

[53]  Yamamoto,et al.  Turnstile device for heralded single photons: Coulomb blockade of electron and hole tunneling in quantum confined p-i-n heterojunctions. , 1994, Physical review letters.

[54]  D. Gammon,et al.  An All-Optical Quantum Gate in a Semiconductor Quantum Dot , 2003, Science.

[55]  Chen,et al.  Structural Transition in Large-Lattice-Mismatch Heteroepitaxy. , 1996, Physical review letters.

[56]  M. Lannoo,et al.  Origin of self-assembled quantum dots in highly mismatched heteroepitaxy. , 1995, Physical review letters.

[57]  Y. Okada,et al.  Basic properties of GaAs oxide generated by scanning probe microscope tip-induced nano-oxidation process , 2000 .

[58]  G. Abstreiter,et al.  Photocurrent and photoluminescence of a single self-assembled quantum dot in electric fields , 2001 .

[59]  G. Abstreiter,et al.  Optical spectroscopy of charged excitons in single quantum dot photodiodes , 2001 .

[60]  V. Ustinov,et al.  Kinetics of the initial stage of coherent island formation in heteroepitaxial systems , 2003 .

[61]  G. Patriarche,et al.  Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm , 2001 .

[62]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[63]  Hans W. Schumacher,et al.  Fabrication of a single-electron transistor by current-controlled local oxidation of a two-dimensional electron system , 2000 .

[64]  F. Patella,et al.  Tracing the two- to three-dimensional transition in the InAs/GaAs(001) heteroepitaxial growth , 2003 .

[65]  K. Asakawa,et al.  Site-controlled InAs single quantum-dot structures on GaAs surfaces patterned by in situ electron-beam lithography , 2000 .

[66]  T. Yamauchi,et al.  Correlation between the gap energy and size of single InAs quantum dots on GaAs(001) studied by scanning tunneling spectroscopy , 2000 .

[67]  S Tarucha,et al.  Few-electron molecular states and their transitions in a single InAs quantum dot molecule. , 2005, Physical review letters.

[68]  Yasuhiko Arakawa,et al.  Non-classical Photon Emission from a Single InAs/InP Quantum Dot in the 1.3-µm Optical-Fiber Band , 2004 .

[69]  J. Merz,et al.  ASYMMETRIC STARK SHIFT IN ALXIN1-XAS/ALVGA1-YAS SELF-ASSEMBLED DOTS , 1998 .

[70]  Z. Suo,et al.  Epitaxial films stabilized by long-range forces , 1998 .

[71]  I. Suemune,et al.  Photon Antibunching Observed from an InAlAs Single Quantum Dot , 2005 .

[72]  B. Riel,et al.  Reflection high-energy electron diffraction observation of the dynamics of semiconductor quantum dot formation and decay , 2002 .

[73]  Ahsan Nazir,et al.  Optical schemes for quantum computation in quantum dot molecules , 2003 .

[74]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[75]  Michael Pepper,et al.  Electrically Driven Single-Photon Source , 2001, Science.

[76]  Davis,et al.  Morphological instability in epitaxially strained dislocation-free solid films. , 1991, Physical review letters.

[77]  M. Pepper Ballistic injection of electrons in metal-semiconductor junctions. I. Phonon spectroscopy and impurity-enhanced inelastic scattering in n+ silicon , 1980 .