Joint Estimation of Quantile Planes Over Arbitrary Predictor Spaces

ABSTRACT In spite of the recent surge of interest in quantile regression, joint estimation of linear quantile planes remains a great challenge in statistics and econometrics. We propose a novel parameterization that characterizes any collection of noncrossing quantile planes over arbitrarily shaped convex predictor domains in any dimension by means of unconstrained scalar, vector and function valued parameters. Statistical models based on this parameterization inherit a fast computation of the likelihood function, enabling penalized likelihood or Bayesian approaches to model fitting. We introduce a complete Bayesian methodology by using Gaussian process prior distributions on the function valued parameters and develop a robust and efficient Markov chain Monte Carlo parameter estimation. The resulting method is shown to offer posterior consistency under mild tail and regularity conditions. We present several illustrative examples where the new method is compared against existing approaches and is found to offer better accuracy, coverage and model fit. Supplementary materials for this article are available online.

[1]  V. Chernozhukov,et al.  QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING , 2007, 0704.3649.

[2]  J. Ghosh,et al.  Posterior consistency of logistic Gaussian process priors in density estimation , 2007 .

[3]  A. Gelfand,et al.  Gaussian predictive process models for large spatial data sets , 2008, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[4]  B. Cade,et al.  Influences of spatial and temporal variation on fish-habitat relationships defined by regression quantiles , 2002 .

[5]  T. Stukel,et al.  Determinants of plasma levels of beta-carotene and retinol. Skin Cancer Prevention Study Group. , 1989, American journal of epidemiology.

[6]  S. Tokdar Towards a Faster Implementation of Density Estimation With Logistic Gaussian Process Priors , 2007 .

[7]  Yves Croissant,et al.  Panel data econometrics in R: The plm package , 2008 .

[8]  J. Elsner,et al.  The increasing intensity of the strongest tropical cyclones , 2008, Nature.

[9]  Christophe Andrieu,et al.  A tutorial on adaptive MCMC , 2008, Stat. Comput..

[10]  Peter Müller,et al.  DPpackage: Bayesian Semi- and Nonparametric Modeling in R , 2011 .

[11]  E. Tsionas Bayesian quantile inference , 2003 .

[12]  Jason Abrevaya The effects of demographics and maternal behavior on the distribution of birth outcomes , 2001 .

[13]  R. Koenker Censored Quantile Regression Redux , 2008 .

[14]  Yuguo Chen,et al.  Bayesian quantile regression with approximate likelihood , 2015, 1506.00834.

[15]  Jerome P. Reiter,et al.  Exploratory quantile regression with many covariates: an application to adverse birth outcomes. , 2011, Epidemiology.

[16]  Alan E. Gelfand,et al.  Bayesian Semiparametric Regression for Median Residual Life , 2003 .

[17]  R. Koenker Quantile Regression: Quantile Regression in R: A Vignette , 2005 .

[18]  Rian,et al.  Non-crossing quantile regression curve estimation , 2010 .

[19]  Paul Thompson,et al.  Bayesian nonparametric quantile regression using splines , 2010, Comput. Stat. Data Anal..

[20]  M. Fuentes,et al.  Journal of the American Statistical Association Bayesian Spatial Quantile Regression Bayesian Spatial Quantile Regression , 2022 .

[21]  Heikki Haario,et al.  Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..

[22]  S. MacEachern,et al.  An ANOVA Model for Dependent Random Measures , 2004 .

[23]  Stephen Portnoy,et al.  Censored Regression Quantiles , 2003 .

[24]  T. Lancaster,et al.  Bayesian Quantile Regression , 2005 .

[25]  Van Der Vaart,et al.  Rates of contraction of posterior distributions based on Gaussian process priors , 2008 .

[26]  Grace L. Yang,et al.  On Bayes Procedures , 1990 .

[27]  A. Kottas,et al.  Bayesian Semiparametric Modelling in Quantile Regression , 2009 .

[28]  P. Lenk The Logistic Normal Distribution for Bayesian, Nonparametric, Predictive Densities , 1988 .

[29]  H. Bondell,et al.  Noncrossing quantile regression curve estimation. , 2010, Biometrika.

[30]  Xuming He Quantile Curves without Crossing , 1997 .

[31]  Runze Li,et al.  NEW EFFICIENT ESTIMATION AND VARIABLE SELECTION METHODS FOR SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS. , 2011, Annals of statistics.

[32]  R. Koenker,et al.  Regression Quantiles , 2007 .

[33]  J. Kadane,et al.  Simultaneous Linear Quantile Regression: A Semiparametric Bayesian Approach , 2012 .

[34]  Van Der Vaart,et al.  Adaptive Bayesian estimation using a Gaussian random field with inverse Gamma bandwidth , 2009, 0908.3556.

[35]  M. Krnjajic Bayesian Nonparametric Modeling in Quantile Regression , 2007 .

[36]  J. Monahan,et al.  Proper likelihoods for Bayesian analysis , 1992 .

[37]  David W. Hosmer,et al.  Applied Survival Analysis: Regression Modeling of Time-to-Event Data , 2008 .

[38]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[39]  Jack A. Taylor,et al.  Approximate Bayesian inference for quantiles , 2005 .

[40]  R. Koenker Quantile Regression: Name Index , 2005 .