Composite structure of α phase in metastable β Ti alloys induced by lattice strain during β to α phase transformation

[1]  H. Hosoda,et al.  Formation process of the incompatible martensite microstructure in a beta-titanium shape memory alloy , 2017 .

[2]  M. Echlin,et al.  Incipient slip and long range plastic strain localization in microtextured Ti-6Al-4V titanium , 2016 .

[3]  B. Tang,et al.  Phase precipitation behavior during isothermal deformation in β-quenched near beta titanium alloy Ti-7333 , 2016 .

[4]  T. Richeton,et al.  Micromechanical modeling of hardening mechanisms in commercially pure α-titanium in tensile condition , 2016 .

[5]  Yunzhi Wang,et al.  On variant distribution and coarsening behavior of the α phase in a metastable β titanium alloy , 2016 .

[6]  Yufeng Zheng,et al.  Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys , 2016 .

[7]  M. Preuss,et al.  The effect of aluminium on twinning in binary alpha-titanium , 2016 .

[8]  H. Fraser,et al.  Experimental assessment of variant selection rules for grain boundary α in titanium alloys , 2016 .

[9]  I. Guillot,et al.  In situ monitoring of the deformation mechanisms in titanium with different oxygen contents , 2015 .

[10]  Wei-jie Lu,et al.  Variant selection by dislocations during α precipitation in α/β titanium alloys , 2015 .

[11]  H. Fraser,et al.  Variant selection of grain boundary α by special prior β grain boundaries in titanium alloys , 2014 .

[12]  Jinshan Li,et al.  Evolution of the secondary α phase morphologies during isothermal heat treatment in Ti-7333 alloy , 2013 .

[13]  Changmeng Liu,et al.  Microstructural characterization of laser melting deposited Ti–5Al-5Mo–5V–1Cr–1Fe near β titanium alloy , 2013 .

[14]  Yunzhi Wang,et al.  Variant selection during α precipitation in Ti–6Al–4V under the influence of local stress – A simulation study , 2013 .

[15]  A. Ghosh,et al.  Quantitative microstructural characterization of a near beta Ti alloy, Ti-5553 under different processing conditions , 2013 .

[16]  J. Teixeira,et al.  Influence of transformation temperature on microtexture formation associated with α precipitation at β grain boundaries in a β metastable titanium alloy , 2013 .

[17]  James C. Williams,et al.  Perspectives on Titanium Science and Technology , 2013 .

[18]  Yunzhi Wang,et al.  Predicting equilibrium shape of precipitates as function of coherency state , 2012 .

[19]  C. Esling,et al.  A method to identify dislocations in a known crystal structure by transmission electron microscopy , 2011 .

[20]  H.-G. Brokmeier,et al.  StressTextureCalculator: a software tool to extract texture, strain and microstructure information from area‐detector measurements , 2011 .

[21]  A. Dehghan-Manshadi,et al.  Development of α-phase morphologies during low temperature isothermal heat treatment of a Ti–5Al–5Mo–5V–3Cr alloy , 2011 .

[22]  A. Habraken,et al.  Interests and limitations of nanoindentation for bulk multiphase material identification: Application to the β phase of Ti-5553 , 2009 .

[23]  H. Fraser,et al.  ω-Assisted nucleation and growth of α precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5Fe β titanium alloy , 2009 .

[24]  Leo Kestens,et al.  Nucleation and variant selection of secondary α plates in a β Ti alloy , 2008 .

[25]  Richard Dashwood,et al.  Thermomechanical processing of Ti-5Al-5Mo-5V-3Cr , 2008 .

[26]  H. Fraser,et al.  Crystallographic and morphological relationships between β phase and the Widmanstätten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy , 2007 .

[27]  H. Fraser,et al.  Selection of α variants during microstructural evolution in α/β titanium alloys , 2007 .

[28]  S. Zwaag,et al.  Experimental observations elucidating the mechanisms of structural bcc-hcp transformations in β-Ti alloys , 2006 .

[29]  K. Ameyama,et al.  Reasons for Formation of Triangular α Precipitates in Ti–15V–3Cr–3Sn–3Al β Titanium Alloy , 2006 .

[30]  P. S. Bate,et al.  Crystallographic variant selection in Ti–6Al–4V , 2004 .

[31]  H. Fraser,et al.  The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy , 2003 .

[32]  J. Fundenberger,et al.  Polycrystal orientation maps from TEM. , 2003, Ultramicroscopy.

[33]  M. Starink,et al.  Effect of self-accommodation on α/α boundary populations in pure titanium , 2003 .

[34]  G. Weng,et al.  A direct method for the crystallography of martensitic transformation and its application to TiNi and AuCd , 2002 .

[35]  J. Fundenberger,et al.  EP - a program for determination of crystallite orientations from TEM Kikuchi and CBED diffraction patterns , 2002 .

[36]  M. Philippe,et al.  Modeling of the texture transformation in a Ti-64 sheet after hot compression , 1997 .

[37]  M. Philippe,et al.  Investigation of the α- and β- texture evolution of hot rolled Ti-64 products , 1996 .

[38]  T. Furuhara,et al.  Crystallography of grain boundary α precipitates in a β titanium alloy , 1996 .

[39]  V. V. Shevel'kov Structural conversions in VT22 titanium alloy during aging , 1992 .

[40]  W. G. Burgers On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium , 1934 .