Effects of E×B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices

One of the scientific success stories of fusion research over the past decade is the development of the ExB shear stabilization model to explain the formation of transport barriers in magnetic confinement devices. This model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition. This concept has the universality needed to explain the edge transport barriers seen in limiter and divertor tokamaks, stellarators, and mirror machines. More recently, this model has been applied to explain the further confinement improvement from H (high)-mode to VH (very high)-mode seen in some tokamaks, where the edge transport barrier becomes wider. Most recently, this paradigm has been applied to the core transport barriers formed in plasmas with negative or low magnetic shear in the plasma core. These examples of confinement improvement are of considerable physical interest; it is not often that a system self-organizes to a higher energy state with reduced turbulence and transport when an additional source of free energy is applied to it. The transport decrease that is associated with ExB velocity shear effects also has significant practical consequences for fusion research. The fundamental physics involved in transport reduction is the effect of ExB shear on the growth, radial extent and phase correlation of turbulent eddies in the plasma. The same fundamental transport reduction process can be operational in various portions of the plasma because there are a number ways to change the radial electric field Er. An important theme in this area is the synergistic effect of ExB velocity shear and magnetic shear. Although the ExB velocity shear appears to have an effect on broader classes of microturbulence, magnetic shear can mitigate some potentially harmful effects of ExB velocity shear and facilitate turbulence stabilization.

[1]  J. Manickam,et al.  Advanced tokamak physics-status and prospects , 1994 .

[2]  D. M. Meade,et al.  Initial studies of confinement, adiabatic compression, and neutral-beam heating in TFTR , 1985 .

[3]  E. Doyle,et al.  Suppression of the edge turbulence at the L-H transition in DIII-D , 1992 .

[4]  Ishii,et al.  Ambipolar potential effect on a drift-wave mode in a tandem-mirror plasma. , 1990, Physical review letters.

[5]  F. Busse,et al.  Convection driven by centrifugal bouyancy in a rotating annulus , 1985 .

[6]  Snider,et al.  Observation of H-mode confinement in the DIII-D tokamak with electron cyclotron heating. , 1988, Physical review letters.

[7]  F. Wagner,et al.  Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak , 1982 .

[8]  S. Lebedev,et al.  LETTER: Radial current in a tokamak caused by a biased electrode , 1992 .

[9]  S. Sen,et al.  Theory of drift waves in the presence of parallel and perpendicular flow curvature. I. Slab model , 1996 .

[10]  S. Coda,et al.  Constraints on theories provided by fast time response measurements across the L to H transition on DIII-D , 1996 .

[11]  G. Staebler,et al.  Electric field effects on ion temperature gradient modes in a sheared slab , 1991 .

[12]  L. L. Lao,et al.  Confinement physics of H-mode discharges in DIII-D , 1989 .

[13]  L. L. Lao,et al.  Effect of plasma radial electric field on motional Stark effect measurements and equilibrium reconstruction , 1997 .

[14]  Jose Milovich,et al.  Toroidal gyro‐Landau fluid model turbulence simulations in a nonlinear ballooning mode representation with radial modes , 1994 .

[15]  M. Zarnstorff,et al.  Fluctuation measurements in the plasma interior on TFTR , 1992 .

[16]  S. Coda,et al.  A phase contrast interferometer on DIII‐D , 1992 .

[17]  A. Mase,et al.  Control of the radial electric field and of turbulent fluctuations in a tandem mirror plasma , 1991 .

[18]  R. Budny,et al.  Local transport barrier formation and relaxation in reverse-shear plasmas on the Tokamak Fusion Test Reactor , 1997 .

[19]  J. Charney,et al.  Multiple Flow Equilibria in the Atmosphere and Blocking , 1979 .

[20]  Harold P. Furth,et al.  Plasma Physics and Controlled Nuclear Fusion Research , 2007 .

[21]  H-mode transition in the CHS heliotron/torsatron , 1994 .

[22]  Kubo,et al.  Observation of the limiter H mode in the JT-60 tokamak with lower-hybrid current drive. , 1990, Physical review letters.

[23]  Mike Kotschenreuther,et al.  Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities , 1995 .

[24]  Lao,et al.  Regime of very high confinement in the boronized DIII-D tokamak. , 1991, Physical review letters.

[25]  K. H. Burrell,et al.  Flow shear induced fluctuation suppression in finite aspect ratio shaped tokamak plasma , 1995 .

[26]  Paul W. Terry,et al.  Theory of shear flow effects on long‐wavelength drift wave turbulence , 1992 .

[27]  K. L. Sidikman,et al.  Theory of electric‐field curvature effects on long‐wavelength drift wave turbulence , 1994 .

[28]  R. J. Groebner,et al.  An emerging understanding of H-mode discharges in tokamaks , 1993 .

[29]  G. M. Staebler,et al.  Particle and energy confinement bifurcation in tokamaks , 1993 .

[30]  Wade,et al.  Rotation characteristics of main ions and impurity ions in H-mode tokamak plasma. , 1994, Physical review letters.

[31]  F. Sardei,et al.  A Summary on H-Mode Studies in W7-AS , 1995 .

[32]  Roberts,et al.  Magnetic field pitch-angle measurments in the PBX-M tokamak using the motional Stark effect. , 1989, Physical review letters.

[33]  E. Holzhauer,et al.  Collective laser light scattering from electron density fluctuations in fusion research plasmas (invited) , 1990 .

[34]  L. Lao,et al.  Role of the radial electric field in the transition from L (low) mode to H (high) mode to VH (very high) mode in the DIII‐D tokamak* , 1994 .

[35]  E. Doyle,et al.  Microturbulence damping mechanisms in the DIII‐D tokamak* , 1993 .

[36]  Tsuji,et al.  Internal transport barrier on q=3 surface and poloidal plasma spin up in JT-60U high- beta p discharges. , 1994, Physical review letters.

[37]  Beer,et al.  The roles of electric field shear and Shafranov shift in sustaining high confinement in enhanced reversed shear plasmas on the TFTR tokamak , 1997 .

[38]  B. Rice,et al.  Motional Stark effect upgrades on DIII-D , 1995 .

[39]  Gregory W. Hammett,et al.  Advances in the simulation of toroidal gyro Landau fluid model turbulence , 1995 .

[40]  L. L. Lao,et al.  Confinement and stability of VH-mode discharges in the DIII-D tokamak , 1992 .

[41]  R. Hazeltine Self‐consistent radial sheath , 1989 .

[42]  P. Diamond,et al.  Theory of neoclassical ion temperature-gradient-driven turbulence , 1991 .

[43]  S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability , 1961 .

[44]  F. Hinton,et al.  Poloidal rotation in tokamaks with large electric field gradients , 1995 .

[45]  Mori,et al.  H mode observed in the JFT-2M tokamak with edge heating by electron cyclotron waves. , 1989, Physical review letters.

[46]  T. Osborne,et al.  High and very high modes from energy, particle, and momentum transport models , 1994 .

[47]  Tadashi Sekiguchi,et al.  Plasma Physics and Controlled Nuclear Fusion Research , 1987 .

[48]  Geist,et al.  H mode of the W 7-AS stellarator. , 1993, Physical review letters.

[49]  Burrell,et al.  Role of edge electric field and poloidal rotation in the L-H transition. , 1990, Physical review letters.

[50]  E. C. Crume,et al.  A model for the L-H transition in tokamaks , 1990 .

[51]  L. L. Lao,et al.  Wall stabilization of high beta plasmas in DIII-D , 1995 .

[52]  L. Lao,et al.  An optimization of beta in the DIII-D tokamak , 1992 .

[53]  P. Diamond,et al.  Saturation of Kelvin–Helmholtz fluctuations in a sheared magnetic field , 1988 .

[54]  Sakai,et al.  High radial confinement mode induced by dc limiter biasing in the HIEI tandem mirror. , 1993, Physical review letters.

[55]  Brown,et al.  H-mode behavior induced by cross-field currents in a tokamak. , 1989, Physical review letters.

[56]  E. Doyle,et al.  Far‐infrared heterodyne scattering to study density fluctuations on the DIII‐D tokamak , 1990 .

[57]  D.F.H. Start,et al.  Shear Reversal and Mhd Activity During Pellet Enhanced Performance Pulses in Jet , 1992 .

[58]  Yoshihiko Koide,et al.  Progress in confinement and stability with plasma shape and profile control for steady-state operation in the Japan Atomic Energy Research Institute Tokamak-60 Upgrade , 1997 .

[59]  H. Kimura Recent results from high performance and steady‐state researches in the Japan Atomic Energy Research Institute Tokamak‐60 Upgrade , 1996 .

[60]  Hong,et al.  Higher Fusion Power Gain with Current and Pressure Profile Control in Strongly Shaped DIII-D Tokamak Plasmas. , 1996, Physical review letters.

[61]  K. Itoh,et al.  REVIEW ARTICLE: The role of the electric field in confinement , 1996 .

[62]  Effect of magnetic braking of the plasma rotation on the H-mode radial electric field and energy confinement in the DIII-D tokamak , 1993 .

[63]  Lao,et al.  Wall stabilization of high beta tokamak discharges in DIII-D. , 1995, Physical review letters.

[64]  S. Coda,et al.  Beyond paradigm: Turbulence, transport, and the origin of the radial electric field in low to high confinement mode transitions in the DIII-D tokamak , 1995 .

[65]  V. Erckmann,et al.  H-mode of W7-AS stellarator , 1994 .

[66]  L. Lao,et al.  Motional Stark effect polarimetry for a current profile diagnostic in DIII‐D , 1990 .

[67]  Lao,et al.  High internal inductance improved confinement H-mode discharges obtained with an elongation ramp technique in the DIII-D tokamak. , 1993, Physical review letters.

[68]  L. L. Lao,et al.  Rotational and magnetic shear stabilization of magnetohydrodynamic modes and turbulence in DIII‐D high performance discharges , 1996 .

[69]  E. Doyle,et al.  Physics of turbulence control and transport barrier formation in DIII-D , 1996 .

[70]  A. M. Edwards,et al.  Characteristics of ohmic H-modes in COMPASS-D , 1994 .

[71]  Observation of the H-mode in ohmically heated divertor discharges on DIII-D , 1990 .

[72]  G. Taylor,et al.  Roles of Electric Field Shear and Shafranov Shift in Sustaining High Confinement in Enhanced Reversed Shear Plasmas on the TFTR Tokamak , 1997 .

[73]  T. Petrie,et al.  Recent VH-mode results on DIII-D , 1994 .

[74]  T. Osborne,et al.  Interior microturbulence characteristics during H- and VH-mode in the DIII-D tokamak , 1994 .

[75]  L. L. Lao,et al.  Very high confinement discharges in DIII‐D after boronization , 1992 .

[76]  Lao,et al.  Enhanced confinement and stability in DIII-D discharges with reversed magnetic shear. , 1995, Physical review letters.

[77]  T. Fujita,et al.  Internal Transport Barrier for Electrons in JT-60U Reversed Shear Discharges , 1997 .

[78]  C. Sborchia,et al.  Overview of high performance H-modes in JET , 1994 .

[79]  Benjamin A. Carreras,et al.  DYNAMICS OF TRANSITION TO ENHANCED CONFINEMENT IN REVERSED MAGNETIC SHEAR DISCHARGES , 1997 .

[80]  K. Shaing Suppression of turbulent fluctuations in tokamaks , 1993 .

[81]  M. Rosenbluth,et al.  Stability of ion-temperature-gradient-driven modes in the presence of sheared poloidal flows , 1992 .

[82]  Gerhard Raupp,et al.  Edge Physics and H-Mode Studies in Asdex Upgrade , 1993 .

[83]  K. Burrell Summary of experimental progress and suggestions for future work , 1994 .

[84]  M. Mauel,et al.  Demonstration of high‐performance negative central magnetic shear discharges in the DIII‐D tokamak , 1996 .

[85]  Paul W. Terry,et al.  Influence of sheared poloidal rotation on edge turbulence , 1990 .

[86]  P. Diamond,et al.  Resistive pressure‐gradient‐driven turbulence with self‐consistent flow profile evolution , 1993 .

[87]  C. Forest,et al.  Transport and performance in DIII-D discharges with weak or negative central magnetic shear , 1996 .

[88]  T. Osborne,et al.  Core flow shear as the cause of very high confinement in the DIII-D tokamak , 1995 .

[89]  G. Rewoldt,et al.  Collisional effects on kinetic electromagnetic modes and associated quasilinear transport , 1987 .

[90]  J. Manickam,et al.  Experimental exploration of profile control in the Princeton Beta Experiment-Modified (PBX-M) tokamak , 1993 .

[91]  Schmitz,et al.  Steady-state convection and fluctuation-driven particle transport in the H-mode transition. , 1992, Physical review letters.

[92]  Parker,et al.  Gyrokinetic simulation of ion temperature gradient driven turbulence in 3D toroidal geometry. , 1993, Physical review letters.

[93]  E. Joffrin,et al.  Improved confinement in high li lower hybrid driven steady state plasmas in TORE SUPRA , 1994 .

[94]  McGuire,et al.  Peaked density profiles in circular-limiter H modes on the TFTR tokamak. , 1990, Physical review letters.

[95]  G. Oost,et al.  Effects of radial electric fields on the turbulence and transport in the TEXTOR edge and SOL plasma , 1992 .

[96]  F. M. Levinton,et al.  The multichannel motional Stark effect diagnostic on TFTR , 1992 .

[97]  Beer,et al.  Turbulent Fluctuations in TFTR Configurations with Reversed Magnetic Shear. , 1996, Physical review letters.

[98]  T. Hahm Rotation shear induced fluctuation decorrelation in a toroidal plasma , 1994 .

[99]  K. L. Sidikman,et al.  Bifurcations and modulational interaction in negative compressibility turbulence , 1994 .

[100]  S. Ohdachi,et al.  Fluctuations and transport of JFT-2M scrape-off plasma , 1994 .

[101]  E. Joffrin,et al.  Stationary magnetic shear reversal experiments in Tore Supra , 1996 .

[102]  E. D. Fredrickson,et al.  Improved confinement with reversed magnetic shear in TFTR. , 1995 .

[103]  Bounce averaged trapped electron fluid equations for plasma turbulence , 1996 .

[104]  M. Beer,et al.  Turbulent fluctuations in the main core of TFTR plasmas with negative magnetic shear , 1997 .

[105]  F. Busse,et al.  Convection in a rotating cylindrical annulus. Part 2. Transitions to asymmetric and vacillating flow , 1987, Journal of Fluid Mechanics.

[106]  G. Staebler,et al.  Anomalous momentum transport from drift wave turbulence , 1993 .

[107]  S. Mahajan,et al.  Edge turbulence scaling with shear flow , 1991 .

[108]  F. Wagner,et al.  Development of an Edge Transport Barrier at the H-Mode Transition of ASDEX , 1984 .

[109]  R. Bell,et al.  Turbulent edge transport in the Princeton Beta Experiment‐Modified high confinement mode , 1994 .

[110]  Wootton,et al.  Evidence for confinement improvement by velocity-shear suppression of edge turbulence. , 1990, Physical review letters.

[111]  E. Doyle,et al.  Physics of the L-mode to H-mode transition in tokamaks , 1992 .

[112]  C. Greenfield,et al.  Local analysis of confinement and transport in neutral beam heated DIII-D discharges with negative magnetic shear , 1996 .

[113]  Fujita,et al.  Edge electric-field profiles of H-mode plasmas in the JFT-2M tokamak. , 1990, Physical review letters.

[114]  Wagner,et al.  Observation of a high-confinement regime in a tokamak plasma with ion cyclotron resonance heating. , 1987, Physical review letters.

[115]  T. Kondoh High performance and current drive experiments in the JAERI Tokamak‐60 Upgrade* , 1994 .

[116]  J. Cordey,et al.  Global and local confinement analysis of JET's VH-mode pulses , 1994 .

[117]  G. Staebler,et al.  Investigations of VH-mode in DIII-D and JET , 1993 .

[118]  E. Synakowski,et al.  The effect of Er on motional-Stark effect measurements of q, a new technique for measuring Er, and a test of the neoclassical Er , 1997 .

[119]  F. Engelmann Plasma Physics and Controlled Nuclear Fusion Research , 1976 .

[120]  T. L. Rhodes,et al.  The structure of magnetic fluctuations in tokamaks: Observations in the TEXT tokamak , 1991 .

[121]  Murakami,et al.  Energy Transport in Tokamak Plasmas with Central Current Density Control Using Fast Waves. , 1996, Physical review letters.

[122]  H. Shirai,et al.  Internal transport barrier with improved confinement in the JT-60U tokamak , 1996 .