Inexact generalized Noda iterations for generalized eigenproblems

Abstract In this paper, we present an inexact generalized Noda iteration (IGNI) for finding the Perron pair of the generalized eigenproblem arising from economic models. We prove that the approximate eigenvalue sequence generated by IGNI converges globally linearly; Furthermore, we also propose an enhanced inexact generalized Noda iteration(EIGNI), and prove that the approximate eigenvector sequence generated by EIGNI algorithms converges superlinearly. Numerical examples illustrate that the proposed IGNI and EIGNI algorithms are efficient.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  Weizhang Huang,et al.  Sign-preserving of principal eigenfunctions in P1 finite element approximation of eigenvalue problems of second-order elliptic operators , 2013, J. Comput. Phys..

[3]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[4]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[5]  Takashi Noda,et al.  Note on the computation of the maximal eigenvalue of a non-negative irreducible matrix , 1971 .

[6]  Gene H. Golub,et al.  Matrix computations , 1983 .

[7]  Wen-Wei Lin,et al.  A positivity preserving inexact Noda iteration for computing the smallest eigenpair of a large irreducible $$M$$M-matrix , 2013, Numerische Mathematik.

[8]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[9]  Chun-Hua Guo,et al.  A Positivity Preserving Inverse Iteration for Finding the Perron Pair of an Irreducible Nonnegative Third Order Tensor , 2016, SIAM J. Matrix Anal. Appl..

[10]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[11]  Ludwig Elsner,et al.  Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix , 1976 .

[12]  D. D. Olesky,et al.  Perron-frobenius theory for a generalized eigenproblem , 1995 .

[13]  T. Fujimoto,et al.  The Frobenius theorem, its Solow-Samuelson extension and the Kuhn-Tucker theorem , 1974 .

[14]  Wen Li,et al.  Noda iterations for generalized eigenproblems following Perron-Frobenius theory , 2018, Numerical Algorithms.

[15]  Xue Jungong Computing the Smallest Eigenvalue of an M-Matrix , 1996 .