Inexact generalized Noda iterations for generalized eigenproblems
暂无分享,去创建一个
[1] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[2] Weizhang Huang,et al. Sign-preserving of principal eigenfunctions in P1 finite element approximation of eigenvalue problems of second-order elliptic operators , 2013, J. Comput. Phys..
[3] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[4] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[5] Takashi Noda,et al. Note on the computation of the maximal eigenvalue of a non-negative irreducible matrix , 1971 .
[6] Gene H. Golub,et al. Matrix computations , 1983 .
[7] Wen-Wei Lin,et al. A positivity preserving inexact Noda iteration for computing the smallest eigenpair of a large irreducible $$M$$M-matrix , 2013, Numerische Mathematik.
[8] J. Gillis,et al. Matrix Iterative Analysis , 1961 .
[9] Chun-Hua Guo,et al. A Positivity Preserving Inverse Iteration for Finding the Perron Pair of an Irreducible Nonnegative Third Order Tensor , 2016, SIAM J. Matrix Anal. Appl..
[10] G. Stewart. Matrix Algorithms, Volume II: Eigensystems , 2001 .
[11] Ludwig Elsner,et al. Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix , 1976 .
[12] D. D. Olesky,et al. Perron-frobenius theory for a generalized eigenproblem , 1995 .
[13] T. Fujimoto,et al. The Frobenius theorem, its Solow-Samuelson extension and the Kuhn-Tucker theorem , 1974 .
[14] Wen Li,et al. Noda iterations for generalized eigenproblems following Perron-Frobenius theory , 2018, Numerical Algorithms.
[15] Xue Jungong. Computing the Smallest Eigenvalue of an M-Matrix , 1996 .