Cylindrical grinding of bearing steel with electrolytic in-process dressing

Cylindrical surfaces are increasingly utilized in various areas, and related high-efficiency and high-quality fabricating technologies are of great importance and significant benefit to modern industry. To provide fundamental knowledge for the bearing industry, studies have been conducted on the use of cast-iron-bonded cubic boron nitride (cBN) superabrasive wheels, based on electrolytic in-process dressing (ELID) technique for realizing high-efficiency grinding of steel cylindrical workpieces. Therefore, in this investigation, experiments were carried out on an ordinary cylindrical grinder with a hydrodynamic spindle, and straight type grinding wheels of different grit sizes were used. The effects of grit sizes on surface roughness as well as waviness, roundness, and surface stress were evaluated in both the traverse and plunge grinding modes. Comparison of ELID grinding with other processes was also carried out. Mirror surface grinding of different materials was achieved with the #4000 CIB-cBN wheel. ELID grinding was confirmed to induce compressive stress and to be more cost effective for small batch production of larger components when it works in the traverse mode.