Sparse representation for face recognition based on discriminative low-rank dictionary learning

In this paper, we propose a discriminative low-rank dictionary learning algorithm for sparse representation. Sparse representation seeks the sparsest coefficients to represent the test signal as linear combination of the bases in an over-complete dictionary. Motivated by low-rank matrix recovery and completion, assume that the data from the same pattern are linearly correlated, if we stack these data points as column vectors of a dictionary, then the dictionary should be approximately low-rank. An objective function with sparse coefficients, class discrimination and rank minimization is proposed and optimized during dictionary learning. We have applied the algorithm for face recognition. Numerous experiments with improved performances over previous dictionary learning methods validate the effectiveness of the proposed algorithm.

[1]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[2]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[3]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[4]  Ke Huang,et al.  Sparse Representation for Signal Classification , 2006, NIPS.

[5]  Guillermo Sapiro,et al.  Discriminative learned dictionaries for local image analysis , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Yueting Zhuang,et al.  Sparse representation using nonnegative curds and whey , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[8]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  David Zhang,et al.  Fisher Discrimination Dictionary Learning for sparse representation , 2011, 2011 International Conference on Computer Vision.

[12]  D. B. Graham,et al.  Characterising Virtual Eigensignatures for General Purpose Face Recognition , 1998 .

[13]  René Vidal,et al.  Sparse subspace clustering , 2009, CVPR.

[14]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[15]  Yonina C. Eldar,et al.  Robust Recovery of Signals From a Structured Union of Subspaces , 2008, IEEE Transactions on Information Theory.

[16]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[17]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[18]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[19]  A. Martínez,et al.  The AR face databasae , 1998 .

[20]  Jian Yang,et al.  Robust sparse coding for face recognition , 2011, CVPR 2011.

[21]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[22]  René Vidal,et al.  Robust classification using structured sparse representation , 2011, CVPR 2011.

[23]  Andrea Montanari,et al.  Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..

[24]  René Vidal,et al.  A closed form solution to robust subspace estimation and clustering , 2011, CVPR 2011.

[25]  Junzhou Huang,et al.  Learning with dynamic group sparsity , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[26]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[27]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[28]  Ioannis Pitas,et al.  A Novel Discriminant Non-Negative Matrix Factorization Algorithm With Applications to Facial Image Characterization Problems , 2007, IEEE Transactions on Information Forensics and Security.

[29]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[30]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[32]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.