Synthesis and characterization of Sb2Te3 nanofilms via electrochemical co-deposition method

Abstract Nanofilms of Sb2Te3 were electrodeposited on Au (1 1 1) substrates using a practical electrochemical method, based on the simultaneous underpotential deposition (UPD) of Sb and Te from the same solution containing SbO+, and HTeO 2 + at a constant potential. Sb2Te3 nanofilms were characterized by X-ray diffraction (XRD), scanning tunneling microscopy (STM), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and reflection absorption-FTIR (RA-FTIR). Results indicate that the growth of Sb2Te3 thin films follows the nucleation and three-dimensional (3D) growth mechanism resulting in high crystalline films of Sb2Te3 (1 1 0) in hexagonal structure, which were grown at a kinetically preferred orientation at (1 1 0) on Au (1 1 1). EDS analyses of the films confirm that Sb and Te are present in an approximately 2:3 atomic ratio. The quantum-confined effect of the Sb2Te3 nanofilms is confirmed by the RA-FTIR measurements.

[1]  Junyou Yang,et al.  Electrochemical aspects of depositing Sb2Te3 compound on Au substrate by ECALE , 2007 .

[2]  I. Erdogan,et al.  Electrochemical Atom-by-Atom Growth of PbS by Modified ECALE Method , 2005 .

[3]  N. Myung,et al.  Electrodeposition of Single-Crystal Cubes of Lead Telluride on Polycrystalline Gold Substrate , 2007 .

[4]  J. Stickney,et al.  Electrochemical atomic layer epitaxy (ECALE) , 1991 .

[5]  M. Mathe,et al.  Preliminary studies in the electrodeposition of PbSe/PbTe superlattice thin films via electrochemical atomic layer deposition (ALD). , 2006, Langmuir : the ACS journal of surfaces and colloids.

[6]  T. Wade,et al.  Atomic layer epitaxy of CdTe using an automated electrochemical thin-layer flow deposition reactor , 2002 .

[7]  K. Uosaki,et al.  IN SITU OPTICAL SECOND HARMONIC ROTATIONAL ANISOTROPY MEASUREMENTS OF AN AU(111) ELECTRODE DURING ELECTROCHEMICAL DEPOSITION OF TELLURIUM , 1998 .

[8]  P. Arun,et al.  Influence of grain size on the electrical properties of Sb2Te3 polycrystalline films , 2003 .

[9]  F. Bülbül,et al.  Characterization of size-quantized PbTe thin films synthesized by an electrochemical co-deposition method , 2009 .

[10]  Brian C. Sales,et al.  Smaller Is Cooler , 2002, Science.

[11]  GROWTH OF Ge-DOPED Sb2Te3 THIN FILMS BY METAL-ORGANIC CHEMICAL VAPOR DEPOSITION , 2007 .

[12]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[13]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[14]  Junyou Yang,et al.  The underpotential deposition of bismuth and tellurium on cold rolled silver substrate by ECALE , 2005 .

[15]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[16]  U. Özer,et al.  Equilibrium studies of antimony(III) chelates in aqueous solution , 1971 .

[17]  Jiawei Yan,et al.  An in situ STM study on Sb electrodeposition on Au(1 1 1): irreversible adsorption and reduction, underpotential deposition and mutual influences , 2003 .

[18]  Ümit Demir,et al.  A Scanning Tunneling Microscopy Study of Electrochemically Grown Cadmium Sulfide Monolayers on Au(111) , 1994 .

[19]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[20]  A. Bard,et al.  Standard Potentials in Aqueous Solution , 1985 .

[21]  Lidong Chen,et al.  Electrodeposition of Sb2Te3 Films on Si ( 100 ) and Ag Substrates , 2006 .

[22]  Suk-Kyu Chang,et al.  New metal cation-selective ionophores derived from calixarenes: their syntheses and ion-binding properties , 1986 .

[23]  R. Scholder,et al.  Über Alkaliantimonate(III) , 1958 .

[24]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[25]  Alain Giani,et al.  Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD , 1999 .

[26]  Ü. Demir,et al.  Formation of Bi2S3 thin films on Au(111) by electrochemical atomic layer epitaxy: kinetics of structural changes in the initial monolayers , 2002 .

[27]  Ü. Demir,et al.  Atom-by-Atom Growth of CdS Thin Films by an Electrochemical Co-deposition Method: Effects of pH on the Growth Mechanism and Structure , 2007 .

[28]  I. Erdogan,et al.  Electrochemically induced atom-by-atom growth of ZnS thin films: a new approach for ZnS co-deposition. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[29]  C. Guillén,et al.  STUDY OF THE OPTICAL TRANSITIONS IN ELECTRODEPOSITED CUINSE2 THIN FILMS , 1991 .

[30]  Wen Zhu,et al.  Formation and characterization of Sb2Te3 nanofilms on Pt by electrochemical atomic layer epitaxy. , 2006, The journal of physical chemistry. B.

[31]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[32]  Junyou Yang,et al.  Development of growth cycle for antimony telluride film on Au (111) disk by electrochemical atomic layer epitaxy , 2008 .

[33]  A. M. Farid,et al.  AC conductivity and dielectric properties of Sb2Te3 thin films , 2005 .