Asymptotics for Length and Trajectory from Cumulative Chord Piecewise-Quartics

We discuss the problem of estimating the trajectory of a regular curve γ : [0, T] → Rn and its length d(γ) from an ordered sample of interpolation points Q m = {γ(t 0 ), γ(t 1 ),...,γ(t m )}, with tabular points t i 's unknown, coined as interpolation of unparameterized data. The respective convergence orders for estimating γ and d(γ) with cumulative chord piecewise-quartics are established for different types of unparameterized data including e-uniform and more-or-less uniform samplings. The latter extends previous results on cumulative chord piecewise-quadratics and piecewise-cubics. As shown herein, further acceleration on convergence orders with cumulative chord piecewise-quartics is achievable only for special samplings (e.g. for e-uniform samplings). On the other hand, convergence rates for more-or-less uniform samplings coincide with those already established for cumulative chord piecewise-cubics. The results are experimentally confirmed to be sharp for m large and n=2,3. A good performance of cumulative chord piecewise-quartics extends also to sporadic data (m small) for which our asymptotical analysis does not apply directly.

[1]  Knut Mørken,et al.  A general framework for high-accuracy parametric interpolation , 1997, Math. Comput..

[2]  Michael A. Lachance,et al.  Four point parabolic interpolation , 1991, Comput. Aided Geom. Des..

[3]  Reinhard Klette,et al.  Length Estimation for Curves with epsilon-Uniform Sampling , 2001, CAIP.

[4]  R. Schaback Optimal geometric Hermite interpolation of curves , 1998 .

[5]  Marek A. Kowalski,et al.  Approximating Band- and Energy-Limited Signals in the Presence of Jitter , 1998, J. Complex..

[6]  Atsushi Imiya,et al.  Digital and Image Geometry , 2002, Lecture Notes in Computer Science.

[7]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[8]  Joseph F. Traub,et al.  Complexity and information , 1999, Lezioni Lincee.

[9]  Reinhard Klette,et al.  External versus Internal Parameterizations for Lengths of Curves with Nonuniform Samplings , 2002, Theoretical Foundations of Computer Vision.

[10]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[11]  P. Bézier Numerical control : mathematics and applications , 1972 .

[12]  A. Smeulders,et al.  Discrete straight line segments: parameters, primitives and properties , 1991 .

[13]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[14]  TaubinGabriel Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation , 1991 .

[15]  Atsushi Imiya,et al.  Digital and Image Geometry: Advanced Lectures , 2002 .

[16]  Lyle Noakes,et al.  C1 Interpolation with Cumulative Chord Cubics , 2004, Fundam. Informaticae.

[17]  Lyle Noakes,et al.  Interpolating Sporadic Data , 2002, ECCV.

[18]  Reinhard Klette,et al.  Length estimation of digital curves , 1999, Optics & Photonics.

[19]  M. A. Wolfe A first course in numerical analysis , 1972 .

[20]  Lyle Noakes,et al.  Qumulative Chords and Piecewise-Quadratics , 2002 .

[21]  E. T. Y. Lee Corners, cusps, and parametrizations: variations on a theorem of Epstein , 1992 .

[22]  T. Sederberg,et al.  Approximate parametrization of algebraic curves , 1989 .

[23]  Gabriel Taubin,et al.  Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Reinhard Klette,et al.  Length Estimation for Curves with Different Samplings , 2000, Digital and Image Geometry.

[25]  Boris I. Kvasov,et al.  Methods of Shape-Preserving Spline Approximation , 2000 .

[26]  Przemysław Kiciak Podstawy modelowania krzywych i powierzchni , 2000 .

[27]  Lyle Noakes,et al.  Cumulative chords,Piecewise-Quadratics and Piecewise-cubics , 2006 .

[28]  Frank J. Swetz Geometry and algebra in ancient civilizations , 1986 .

[29]  Malcolm A. Sabin,et al.  High accuracy geometric Hermite interpolation , 1987, Comput. Aided Geom. Des..

[30]  H. S. M. Coxeter,et al.  Geometry and Algebra in Ancient Civilizations , 1985 .

[31]  P. Moran Measuring the length of a curve , 1966 .

[32]  Josef Hoschek,et al.  Intrinsic parametrization for approximation , 1988, Comput. Aided Geom. Des..

[33]  Wolfgang Böhm,et al.  A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..

[34]  Abedallah Rababah High order approximation method for curves , 1995, Comput. Aided Geom. Des..

[35]  Leszek Plaskota,et al.  Noisy information and computational complexity , 1996 .

[36]  Tony DeRose,et al.  Geometric continuity of parametric curves: three equivalent characterizations , 1989, IEEE Computer Graphics and Applications.

[37]  Thomas Bülow,et al.  Minimum-Length Polygons in Simple Cube-Curves , 2000, DGCI.

[38]  Thomas Bülow,et al.  Rubber band algorithm for estimating the length of digitized space-curves , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[39]  Lyle Noakes,et al.  More-or-less-uniform sampling and lengths of curves , 2003 .

[40]  Azriel Rosenfeld,et al.  Advances in Digital and Computational Geometry , 1999 .

[41]  Reinhard Klette,et al.  The Length of Digital Curves , 1999 .