Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond.

We present an experimental study of the longitudinal electron-spin relaxation of ensembles of negatively charged nitrogen-vacancy (NV−) centers in diamond. The measurements were performed with samples having different NV− concentrations and at different temperatures and magnetic fields. We found that the relaxation rate T1−1$T_{1}^{-1}$ increases when transition frequencies in NV− centers with different orientations become degenerate and interpret this as cross-relaxation caused by dipole-dipole interaction.

[1]  N. Chisholm,et al.  Magnetic resonance detection of individual proton spins using quantum reporters. , 2014, Physical review letters.

[2]  J. Meijer,et al.  Nuclear magnetic resonance spectroscopy with single spin sensitivity , 2014, Nature Communications.

[3]  R. Schirhagl,et al.  Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. , 2014, Annual review of physical chemistry.

[4]  Microwave saturation spectroscopy of nitrogen-vacancy ensembles in diamond , 2014, 1403.2119.

[5]  S. Bennett,et al.  All-optical sensing of a single-molecule electron spin. , 2013, Nano letters.

[6]  S. Bhave,et al.  Mechanical spin control of nitrogen-vacancy centers in diamond. , 2013, Physical review letters.

[7]  F. Caruso,et al.  Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe , 2013, Proceedings of the National Academy of Sciences.

[8]  P. Maurer,et al.  Nanometre-scale thermometry in a living cell , 2013, Nature.

[9]  J. Meijer,et al.  Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3 Sample Volume , 2013, Science.

[10]  D. Rugar,et al.  Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor , 2013, Science.

[11]  M. Schweikert,et al.  Magnetic spin imaging under ambient conditions with sub-cellular resolution , 2012, Nature Communications.

[12]  R. Scholten,et al.  Ambient nanoscale sensing with single spins using quantum decoherence , 2012, 1211.5749.

[13]  M. Lukin,et al.  Enhanced solid-state multispin metrology using dynamical decoupling , 2012, 1201.5686.

[14]  W. Marsden I and J , 2012 .

[15]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[16]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[17]  D. Budker,et al.  Optical properties of the nitrogen-vacancy singlet levels in diamond , 2010, 1009.0032.

[18]  S. Armstrong,et al.  NV–NV electron–electron spin and NV–Ns electron — electron and electron-nuclear spin interaction in diamond , 2010 .

[19]  Huan‐Cheng Chang Development and Use of Fluorescent Nanodiamonds as Cellular Markers , 2010 .

[20]  Dean Ho,et al.  Nanodiamonds : applications in biology and nanoscale medicine , 2010 .

[21]  Jörg Opitz,et al.  Selective targeting of green fluorescent nanodiamond conjugates to mitochondria in HeLa cells , 2009, Journal of biophotonics.

[22]  Raymond G. Beausoleil,et al.  Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications , 2009 .

[23]  R. S. Ross,et al.  Lifetime measurements (T1) of electron spins in Si/SiGe quantum dots , 2009, 0908.0173.

[24]  L. Hollenberg,et al.  Scanning quantum decoherence microscopy , 2008, Nanotechnology.

[25]  H-C Chang,et al.  Functionalized fluorescent nanodiamonds for biomedical applications. , 2009, Nanomedicine.

[26]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[27]  A. Müller Journal of Physics Condensed Matter , 2008 .

[28]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[29]  Elena Perevedentseva,et al.  Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling , 2007 .

[30]  Hsiao-Yun Wu,et al.  Characterization and application of single fluorescent nanodiamonds as cellular biomarkers , 2007, Proceedings of the National Academy of Sciences.

[31]  New Journal of Physics The , 2007 .

[32]  Elena Perevedentseva,et al.  Spectroscopic study of bio-functionalized nanodiamonds , 2006 .

[33]  Thomas Zimmer,et al.  Multiwavelength TCSPC lifetime imaging , 2002, SPIE BiOS.

[34]  S. S. Camargo,et al.  Diamond and Related Materials , 2000 .

[35]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[36]  Brown,et al.  Spin dynamics and electronic states of N-V centers in diamond by EPR and four-wave-mixing spectroscopy. , 1991, Physical review letters.

[37]  Akademii︠a︡ medit︠s︡inskikh nauk Sssr Applied magnetic resonance , 1990 .

[38]  Physical Review Letters 63 , 1989 .

[39]  R. Hackett,et al.  ‘Line-crossings’ in the forward-scattering of resonance radiation , 1970 .

[40]  A. Abragam,et al.  Electron paramagnetic resonance of transition ions , 1970 .

[41]  P. Franken INTERFERENCE EFFECTS IN THE RESONANCE FLUORESCENCE OF "CROSSED" EXCITED ATOMIC STATES , 1961 .

[42]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[43]  October I Physical Review Letters , 2022 .