Tetrazine ligation for chemical proteomics

[1]  J. Elf,et al.  Application of Noncanonical Amino Acids for Protein Labeling in a Genomically Recoded Escherichia coli. , 2017, ACS synthetic biology.

[2]  P. Kele,et al.  Bio‐orthogonal Fluorescent Labelling of Biopolymers through Inverse‐Electron‐Demand Diels–Alder Reactions , 2017, Chembiochem : a European journal of chemical biology.

[3]  Michael F. Cuccarese,et al.  Quantitating drug-target engagement in single cells in vitro and in vivo. , 2017, Nature chemical biology.

[4]  B. Oliveira,et al.  Vinyl Ether/Tetrazine Pair for the Traceless Release of Alcohols in Cells , 2016, Angewandte Chemie.

[5]  R. Wombacher,et al.  Green- to far-red-emitting fluorogenic tetrazine probes – synthetic access and no-wash protein imaging inside living cells† †Electronic supplementary information (ESI) available: Synthetic procedures and spectroscopic data, details of cell experiments and imaging. See DOI: 10.1039/c6sc03879d Click h , 2016, Chemical science.

[6]  W. Niu,et al.  Fluorogenic protein labeling using a genetically encoded unstrained alkene† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc03635j Click here for additional data file. , 2016, Chemical science.

[7]  Peng R. Chen,et al.  Optimized Tetrazine Derivatives for Rapid Bioorthogonal Decaging in Living Cells. , 2016, Angewandte Chemie.

[8]  H. Hang,et al.  Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells. , 2016, Journal of the American Chemical Society.

[9]  I. Choi,et al.  A bioorthogonal approach for imaging the binding between Dasatinib and its target proteins inside living cells. , 2016, Chemical communications.

[10]  Ralph Weissleder,et al.  Imaging approaches to optimize molecular therapies , 2016, Science Translational Medicine.

[11]  Haoxing Wu,et al.  A Bioorthogonal Near-Infrared Fluorogenic Probe for mRNA Detection. , 2016, Journal of the American Chemical Society.

[12]  J. Chin,et al.  Tagging and Enriching Proteins Enables Cell-Specific Proteomics , 2016, Cell chemical biology.

[13]  Douglas W. Thomson,et al.  A Modular Probe Strategy for Drug Localization, Target Identification and Target Occupancy Measurement on Single Cell Level. , 2016, ACS chemical biology.

[14]  Jongmin Park,et al.  Nonspecific protein labeling of photoaffinity linkers correlates with their molecular shapes in living cells. , 2016, Chemical communications.

[15]  Fang Liu,et al.  Diels-Alder Reactivities of Benzene, Pyridine, and Di-, Tri-, and Tetrazines: The Roles of Geometrical Distortions and Orbital Interactions. , 2016, Journal of the American Chemical Society.

[16]  Jongmin Park,et al.  Investigation of Specific Binding Proteins to Photoaffinity Linkers for Efficient Deconvolution of Target Protein. , 2016, ACS chemical biology.

[17]  Jason W. Chin,et al.  Selective, rapid and optically switchable regulation of protein function in live mammalian cells. , 2015, Nature chemistry.

[18]  J. Chin,et al.  Genetic Code Expansion Enables Live-Cell and Super-Resolution Imaging of Site-Specifically Labeled Cellular Proteins , 2015, Journal of the American Chemical Society.

[19]  Peng R. Chen,et al.  Diels-Alder reaction-triggered bioorthogonal protein decaging in living cells. , 2014, Nature chemical biology.

[20]  A. Deiters,et al.  Genetically encoded unstrained olefins for live cell labeling with tetrazine dyes. , 2014, Chemical communications.

[21]  Steven E. Wheeler,et al.  Two Rapid Catalyst-Free Click Reactions for In Vivo Protein Labeling of Genetically Encoded Strained Alkene/Alkyne Functionalities , 2014, Bioconjugate chemistry.

[22]  Ligand‐Assisted Dual‐Site Click Labeling of EGFR on Living Cells , 2014, Chembiochem : a European journal of chemical biology.

[23]  R. Weissleder,et al.  Ultrafluorogenic coumarin-tetrazine probes for real-time biological imaging. , 2014, Angewandte Chemie.

[24]  S. Yao,et al.  "Minimalist" cyclopropene-containing photo-cross-linkers suitable for live-cell imaging and affinity-based protein labeling. , 2014, Journal of the American Chemical Society.

[25]  Carsten Schultz,et al.  Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. , 2014, Angewandte Chemie.

[26]  Jennifer A. Prescher,et al.  Finding the right (bioorthogonal) chemistry. , 2014, ACS chemical biology.

[27]  J. Chin,et al.  Bioorthogonal reactions for labeling proteins. , 2014, ACS chemical biology.

[28]  H. Janssen,et al.  Click to release: instantaneous doxorubicin elimination upon tetrazine ligation. , 2013, Angewandte Chemie.

[29]  R. Weissleder,et al.  Bioorthogonal Small Molecule Imaging Agents Allow Single-Cell Imaging of MET , 2013, PloS one.

[30]  Yuguo Zheng,et al.  Target identification of biologically active small molecules via in situ methods. , 2013, Current opinion in chemical biology.

[31]  R. Weissleder,et al.  Bioorthogonal approach to identify unsuspected drug targets in live cells. , 2013, Angewandte Chemie.

[32]  R. Weissleder,et al.  BODIPY-tetrazine derivatives as superbright bioorthogonal turn-on probes. , 2013, Angewandte Chemie.

[33]  C. Slugovc,et al.  Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. , 2013, Chemical Society reviews.

[34]  C. Porco,et al.  Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions , 2013, Science.

[35]  P. Clemons,et al.  Target identification and mechanism of action in chemical biology and drug discovery. , 2013, Nature chemical biology.

[36]  Mark E Bunnage,et al.  Target validation using chemical probes. , 2013, Nature chemical biology.

[37]  Jongmin Park,et al.  From noncovalent to covalent bonds: a paradigm shift in target protein identification. , 2013, Molecular bioSystems.

[38]  Herbert Waldmann,et al.  Target identification for small bioactive molecules: finding the needle in the haystack. , 2013, Angewandte Chemie.

[39]  R. Weissleder,et al.  Bioorthogonal imaging of aurora kinase A in live cells. , 2012, Angewandte Chemie.

[40]  J. Chin,et al.  Genetic Encoding of Bicyclononynes and trans-Cyclooctenes for Site-Specific Protein Labeling in Vitro and in Live Mammalian Cells via Rapid Fluorogenic Diels–Alder Reactions , 2012, Journal of the American Chemical Society.

[41]  Jongmin Park,et al.  Discovery and target identification of an antiproliferative agent in live cells using fluorescence difference in two-dimensional gel electrophoresis. , 2012, Angewandte Chemie.

[42]  T. Carell,et al.  A genetically encoded norbornene amino acid for the mild and selective modification of proteins in a copper-free click reaction. , 2012, Angewandte Chemie.

[43]  Carsten Schultz,et al.  Amino acids for Diels-Alder reactions in living cells. , 2012, Angewandte Chemie.

[44]  J. Chin,et al.  Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. , 2012, Nature chemistry.

[45]  Michael T. Taylor,et al.  Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. , 2012, Journal of the American Chemical Society.

[46]  Raymond E Moellering,et al.  How chemoproteomics can enable drug discovery and development. , 2012, Chemistry & biology.

[47]  R. Weissleder,et al.  Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation. , 2011, Bioconjugate chemistry.

[48]  Peng R. Chen,et al.  A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance. , 2011, Nature chemical biology.

[49]  R. Weissleder,et al.  Bioorthogonal probes for polo-like kinase 1 imaging and quantification. , 2011, Angewandte Chemie.

[50]  M. Debets,et al.  Bioconjugation with strained alkenes and alkynes. , 2011, Accounts of chemical research.

[51]  R. Weissleder,et al.  Biomedical applications of tetrazine cycloadditions. , 2011, Accounts of chemical research.

[52]  R. Weissleder,et al.  Bioorthogonal Small‐Molecule Ligands for PARP1 Imaging in Living Cells , 2010, Chembiochem : a European journal of chemical biology.

[53]  Ian Collins,et al.  Probing the Probes: Fitness Factors For Small Molecule Tools , 2010, Chemistry & biology.

[54]  R. Weissleder,et al.  Bioorthogonal turn-on probes for imaging small molecules inside living cells. , 2010, Angewandte Chemie.

[55]  Jason E Hein,et al.  Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. , 2010, Chemical Society reviews.

[56]  M. Wenk,et al.  Activity-based proteome profiling of potential cellular targets of Orlistat--an FDA-approved drug with anti-tumor activities. , 2010, Journal of the American Chemical Society.

[57]  Carolyn R Bertozzi,et al.  Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.

[58]  G. Superti-Furga,et al.  Target profiling of small molecules by chemical proteomics. , 2009, Nature chemical biology.

[59]  Roger Y Tsien,et al.  Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). , 2009, Angewandte Chemie.

[60]  R. Weissleder,et al.  Tetrazine-based cycloadditions: application to pretargeted live cell imaging. , 2008, Bioconjugate chemistry.

[61]  Joseph M. Fox,et al.  Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. , 2008, Journal of the American Chemical Society.

[62]  B. Leslie,et al.  Identification of the Cellular Targets of Bioactive Small Organic Molecules Using Affinity Reagents , 2008 .

[63]  C. Bertozzi,et al.  In Vivo Imaging of Membrane-Associated Glycans in Developing Zebrafish , 2008, Science.

[64]  T. Kodadek,et al.  Periodate-triggered cross-linking reveals Sug2/Rpt4 as the molecular target of a peptoid inhibitor of the 19S proteasome regulatory particle. , 2007, Journal of the American Chemical Society.

[65]  Carolyn R. Bertozzi,et al.  Copper-free click chemistry for dynamic in vivo imaging , 2007, Proceedings of the National Academy of Sciences.

[66]  Nurullah Saracoglu,et al.  Recent Advances and Applications in 1,2,4,5-Tetrazine Chemistry , 2007 .

[67]  M. Uesugi,et al.  Polyproline-rod approach to isolating protein targets of bioactive small molecules: isolation of a new target of indomethacin. , 2007, Journal of the American Chemical Society.

[68]  Jennifer A. Prescher,et al.  Chemistry in living systems , 2005, Nature chemical biology.

[69]  David R Spring,et al.  Chemical genetics to chemical genomics: small molecules offer big insights. , 2005, Chemical Society reviews.

[70]  Jennifer A. Prescher,et al.  A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. , 2004, Journal of the American Chemical Society.

[71]  Mark Haw Holographic data storage: The light fantastic , 2003, Nature.

[72]  Anna E Speers,et al.  Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition. , 2003, Journal of the American Chemical Society.

[73]  S. Gambhir,et al.  Molecular imaging in living subjects: seeing fundamental biological processes in a new light. , 2003, Genes & development.

[74]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[75]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[76]  D. Heldmann,et al.  1,2,4,5‐Tetrazine: Synthesis and Reactivity in [4+2] Cycloadditions , 1998 .

[77]  C Humm,et al.  The light fantastic. , 1998, Nursing times.

[78]  R. Carboni,et al.  Reactions of Tetrazines with Unsaturated Compounds. A New Synthesis of Pyridazines , 1959 .