Causal Influence of Visual Cues on Hippocampal Directional Selectivity

Hippocampal neurons show selectivity with respect to visual cues in primates, including humans, but this has never been found in rodents. To address this long-standing discrepancy, we measured hippocampal activity from rodents during real-world random foraging. Surprisingly, ∼ 25% of neurons exhibited significant directional modulation with respect to visual cues. To dissociate the contributions of visual and vestibular cues, we made similar measurements in virtual reality, in which only visual cues were informative. Here, we found significant directional modulation despite the severe loss of vestibular information, challenging prevailing theories of directionality. Changes in the amount of angular information in visual cues induced corresponding changes in head-directional modulation at the neuronal and population levels. Thus, visual cues are sufficient for-and play a predictable, causal role in-generating directionally selective hippocampal responses. These results dissociate hippocampal directional and spatial selectivity and bridge the gap between primate and rodent studies.

[1]  R. Muller,et al.  On the directional firing properties of hippocampal place cells , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  Bert Sakmann,et al.  Spontaneous persistent activity in entorhinal cortex modulates cortico-hippocampal interaction in vivo , 2012, Nature Neuroscience.

[3]  Nathaniel J. Killian,et al.  A map of visual space in the primate entorhinal cortex , 2012, Nature.

[4]  R. Muller,et al.  The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  James J Knierim,et al.  Dynamic Interactions between Local Surface Cues, Distal Landmarks, and Intrinsic Circuitry in Hippocampal Place Cells , 2002, The Journal of Neuroscience.

[6]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  Michael E Hasselmo,et al.  Persistent Firing Supported by an Intrinsic Cellular Mechanism in a Component of the Head Direction System , 2009, The Journal of Neuroscience.

[8]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[9]  B. McNaughton,et al.  Place cells, head direction cells, and the learning of landmark stability , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  M. Quirk,et al.  Experience-Dependent Asymmetric Shape of Hippocampal Receptive Fields , 2000, Neuron.

[11]  Mayank R Mehta,et al.  Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality , 2014, Nature Neuroscience.

[12]  Neil Burgess,et al.  Characterizing multiple independent behavioral correlates of cell firing in freely moving animals , 2005, Hippocampus.

[13]  E. Rolls,et al.  View‐responsive neurons in the primate hippocampal complex , 1995, Hippocampus.

[14]  Douglas A Nitz,et al.  Spaces within spaces: rat parietal cortex neurons register position across three reference frames , 2012, Nature Neuroscience.

[15]  H. Eichenbaum,et al.  Cues that hippocampal place cells encode: Dynamic and hierarchical representation of local and distal stimuli , 1997, Hippocampus.

[16]  Mayank R. Mehta,et al.  Multisensory Control of Hippocampal Spatiotemporal Selectivity , 2013, Science.

[17]  B. Sakmann,et al.  Differential responses of hippocampal subfields to cortical up–down states , 2007, Proceedings of the National Academy of Sciences.

[18]  Uri T Eden,et al.  A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. , 2005, Journal of neurophysiology.

[19]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[20]  Gerit Pfuhl,et al.  Functional Split between Parietal and Entorhinal Cortices in the Rat , 2012, Neuron.

[21]  Arne D. Ekstrom,et al.  Cellular networks underlying human spatial navigation , 2003, Nature.

[22]  B. McNaughton,et al.  Local Sensory Cues and Place Cell Directionality: Additional Evidence of Prospective Coding in the Hippocampus , 2004, The Journal of Neuroscience.

[23]  Terrence J. Sejnowski,et al.  Neuronal Tuning: To Sharpen or Broaden? , 1999, Neural Computation.

[24]  K. Nakamura,et al.  Monkey hippocampal neurons related to spatial and nonspatial functions. , 1993, Journal of neurophysiology.

[25]  R. Morris Developments of a water-maze procedure for studying spatial learning in the rat , 1984, Journal of Neuroscience Methods.

[26]  B. McNaughton,et al.  Experience-dependent, asymmetric expansion of hippocampal place fields. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[27]  H. Eichenbaum,et al.  Hippocampal “Time Cells” Bridge the Gap in Memory for Discontiguous Events , 2011, Neuron.

[28]  Mayank R. Mehta,et al.  Multisensory Control of Multimodal Behavior: Do the Legs Know What the Tongue Is Doing? , 2013, PloS one.

[29]  B. J. Clark,et al.  Disruption of the head direction cell network impairs the parahippocampal grid cell signal , 2015, Science.

[30]  E. Rolls Spatial view cells and the representation of place in the primate hippocampus , 1999, Hippocampus.

[31]  Andrea Klug,et al.  The Hippocampus Book , 2016 .

[32]  Sachin S. Deshmukh,et al.  Representation of Non-Spatial and Spatial Information in the Lateral Entorhinal Cortex , 2011, Front. Behav. Neurosci..

[33]  Benjamin J. Kraus,et al.  Hippocampal “Time Cells”: Time versus Path Integration , 2013, Neuron.

[34]  Asohan Amarasingham,et al.  Hippocampus Internally Generated Cell Assembly Sequences in the Rat , 2011 .

[35]  J. Taube The head direction signal: origins and sensory-motor integration. , 2007, Annual review of neuroscience.

[36]  W E Skaggs,et al.  Interactions between location and task affect the spatial and directional firing of hippocampal neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  D. Nitz Tracking Route Progression in the Posterior Parietal Cortex , 2006, Neuron.

[38]  H. Eichenbaum,et al.  The statistical analysis of partially confounded covariates important to neural spiking , 2012, Journal of Neuroscience Methods.

[39]  J. Taube,et al.  Behavioral/systems/cognitive Hippocampal Place Cell Instability after Lesions of the Head Direction Cell Network , 2022 .

[40]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[41]  Nachum Ulanovsky,et al.  Encoding of Head Direction by Hippocampal Place Cells in Bats , 2014, The Journal of Neuroscience.

[42]  Murray Leaf,et al.  WHAT IS “FORMAL” ANALYSIS? , 2004, Cybern. Syst..

[43]  Michael J Kahana,et al.  A sense of direction in human entorhinal cortex , 2010, Proceedings of the National Academy of Sciences.

[44]  R. Desimone,et al.  Object and place memory in the macaque entorhinal cortex. , 1997, Journal of neurophysiology.

[45]  Mayank R Mehta,et al.  From synaptic plasticity to spatial maps and sequence learning , 2015, Hippocampus.

[46]  N. Ulanovsky,et al.  Dynamics of hippocampal spatial representation in echolocating bats , 2011, Hippocampus.

[47]  R. Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  J. Taube,et al.  Hippocampal spatial representations require vestibular input , 2002, Hippocampus.

[49]  Asohan Amarasingham,et al.  Internally Generated Cell Assembly Sequences in the Rat Hippocampus , 2008, Science.

[50]  B. McNaughton,et al.  The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats , 1983, Experimental Brain Research.

[51]  Charlotte N. Boccara,et al.  Grid cells in pre- and parasubiculum , 2010, Nature Neuroscience.

[52]  B. Sakmann,et al.  Phase-locking of hippocampal interneurons' membrane potential to neocortical up-down states , 2006, Nature Neuroscience.

[53]  G. Buzsáki,et al.  Internally-organized mechanisms of the head direction sense , 2015, Nature Neuroscience.

[54]  P E Sharp,et al.  Visual and vestibular influences on head-direction cells in the anterior thalamus of the rat. , 1995, Behavioral neuroscience.

[55]  Douglas A Nitz,et al.  Retrosplenial cortex maps the conjunction of internal and external spaces , 2015, Nature Neuroscience.

[56]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.